题目内容
17.若$\vec a=({4,-2}),\vec b=({k,-1})$,且$\vec a⊥\vec b$,则k=-$\frac{1}{2}$.分析 根据题意,由$\vec a⊥\vec b$,结合向量数量积的坐标计算公式可得$\overrightarrow{a}$•$\overrightarrow{b}$=4k+2=0,解可得k的值,即可得答案.
解答 解:根据题意,$\vec a=({4,-2}),\vec b=({k,-1})$,
若$\vec a⊥\vec b$,则$\overrightarrow{a}$•$\overrightarrow{b}$=4k+2=0,
解可得k=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.
点评 本题考查向量数量积的坐标计算,关键是掌握数量积的坐标计算公式.
练习册系列答案
相关题目
7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
| 学习雷锋精神前 | 50 | 150 | 200 |
| 学习雷锋精神后 | 30 | 170 | 200 |
| 总 计 | 80 | 320 | 400 |
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
| p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.在梯形ABCD中,$\overrightarrow{AB}+3\overrightarrow{CD}=\overrightarrow 0$,则$\overrightarrow{BC}$等于( )
| A. | $-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$ | B. | $-\frac{2}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AD}$ | C. | $\frac{2}{3}\overrightarrow{AB}-\overrightarrow{AD}$ | D. | $-\frac{2}{3}\overrightarrow{AB}+\overrightarrow{AD}$ |
6.首项为-12的等差数列,从第10项起开始为正数,则公差d的取值范围是( )
| A. | d>$\frac{8}{3}$ | B. | d<3 | C. | $\frac{8}{3}$≤d<3 | D. | $\frac{4}{3}$<d≤$\frac{3}{2}$ |