题目内容

16.曲线$y={x^3}-\sqrt{3}x+2$上的任意一点P处切线的倾斜角的取值范围是(  )
A.$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$B.$[{\frac{2π}{3},π})$C.$[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$D.$[{\frac{5π}{6},π})$

分析 设P(m,n),求出函数y的导数,求得切线的斜率,由二次函数的性质可得斜率的范围,再由直线的斜率公式k=tanα(0≤α<π且α≠$\frac{π}{2}$),即可得到所求范围.

解答 解:设P(m,n),
y=x3-$\sqrt{3}$x+2的导数为y′=3x2-$\sqrt{3}$,
即有切线的斜率为k=3m2-$\sqrt{3}$,
由直线的斜率公式k=tanα(0≤α<π,且α≠$\frac{π}{2}$),
可得tanα≥-$\sqrt{3}$,
解得α∈$[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$,
故选A.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,以及直线的斜率公式和倾斜角的范围,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网