题目内容
8.已知偶函数f(x)在区间(-∞,0]单调递减,f(-1)=$\frac{1}{2}$,则满足2f(2x-1)-1<0的取值范围是(0,1).分析 由题意根据f(2x-1)<f(-1),可得|2x-1|<1,由此求得求得x的范围.
解答 解:偶函数f(x)在区间(-∞,0]上单调递减,f(-1)=$\frac{1}{2}$,
则由2f(2x-1)-1<0,得f(2x-1)<f(-1),
可得|2x-1|<1,∴-1<2x-1<1,求得0<x<1,
故x的取值范围为(0,1),
故答案为:(0,1).
点评 本题主要考查函数的单调性和奇偶性的综合应用,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
16.曲线$y={x^3}-\sqrt{3}x+2$上的任意一点P处切线的倾斜角的取值范围是( )
| A. | $[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$ | B. | $[{\frac{2π}{3},π})$ | C. | $[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$ | D. | $[{\frac{5π}{6},π})$ |
3.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同的实数根,则实数a的取值范围是( )
| A. | [-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1] | B. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | D. | (-$\frac{9}{4}$,-1) |
20.下列一定是指数函数的是( )
| A. | y=ax | B. | y=xa(a>0且a≠1) | C. | $y={(\frac{1}{2})^x}$ | D. | y=(a-2)ax |