题目内容
1.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos2B+$\frac{1}{2}$sin2B=1,若|$\overrightarrow{BC}$+$\overrightarrow{AB}$|=3,则$\frac{16b}{ac}$的最小值为$\frac{16(2-\sqrt{2})}{3}$.分析 推导出$\frac{\sqrt{2}}{2}$sin(2B+$\frac{π}{4}$)+$\frac{1}{2}$=1,从而$B=\frac{π}{4}$,由 $|\overrightarrow{BC}+\overrightarrow{AB}|=3$,两边平方,利用余弦定理得b=3,由此能求出$\frac{16b}{ac}$的最小值.
解答 解:∵在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos2B+$\frac{1}{2}$sin2B=1,
∴$\frac{1+cos2B}{2}$+$\frac{sin2B}{2}$=$\frac{\sqrt{2}}{2}$sin(2B+$\frac{π}{4}$)+$\frac{1}{2}$=1,
∵0<B<π,∴$B=\frac{π}{4}$,
∵$|\overrightarrow{BC}+\overrightarrow{AB}|=3$,∴两边平方得a2+c2-2accosB=9=b2,∴b=3,
∵$cosB=\frac{{{a^2}+{c^2}-9}}{2ac}=\frac{{\sqrt{2}}}{2}$,∴ac≤$\frac{9}{2-\sqrt{2}}$,
∴$\frac{16b}{ac}$≥$\frac{16(2-\sqrt{2})}{3}$.
∴$\frac{16b}{ac}$的最小值为$\frac{16(2-\sqrt{2})}{3}$.
故答案为:$\frac{16(2-\sqrt{2})}{3}$.
点评 本题考查代数式的最小值的求法,考查二倍角公式、同角三角函数关系式、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
19.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色花和紫色花在同一花坛的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
20.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=( )
| A. | 2 | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
9.函数$f(x)=sin(2x+\frac{π}{3})$给出下列结论正确的是( )
| A. | f(x)在$(\frac{π}{12},\frac{2π}{3})$是减函数 | B. | $f(x-\frac{π}{6})$是奇函数 | ||
| C. | f(x)的一个对称中心为$(\frac{π}{6},0)$ | D. | f(x)的一条对称轴为$x=\frac{π}{6}$ |
13.已知复数Z=$\frac{{i}^{2017}}{1+i}$(i是虚数单位),则复数Z的共轭复数是( )
| A. | 1+i | B. | 1-i | C. | $\frac{1+i}{2}$ | D. | $\frac{1-i}{2}$ |