题目内容

12.已知集合$A=\left\{{y|y=\sqrt{3-2x},x∈[{-\frac{13}{2},\frac{3}{2}}]}\right\}$,B={x|1-m≤x≤m+1}.
(1)若m=2,求A∩B;
(2)若B⊆A,求m的取值范围.

分析 (1)若m=2,求出集合A,B,即可求A∩B;
(2)若B⊆A,分类讨论,求m的取值范围.

解答 解:$A=\left\{{y|y=\sqrt{3-2x},x∈[{-\frac{13}{2},\frac{3}{2}}]}\right\}$=[0,4]
(1)m=2,B={x|-1≤x≤3},
∴A∩B=[0,3];
(2)B⊆A,则B=∅,1-m>m+1,∴m<0,
B≠∅,$\left\{\begin{array}{l}{1-m≤m+1}\\{1-m≥0}\\{m+1≤4}\end{array}\right.$,∴0≤m≤1,
综上所述,m≤1.

点评 本题考查集合的关系与运算,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网