题目内容
已知直线l,m,平面α,β满足l⊥α,m?β,则“l⊥m”是“α∥β”的( )
| A、充要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:当α∥β时,由线面垂直的性质可得l⊥m,故必要性成立;当 l⊥m 时,不一定有α∥β,故充分性不成立.
解答:
解:由于 l⊥α,α∥β 可得 l⊥β,又 m?β,故有l⊥m,故必要性成立.
当l⊥α,直线m?平面β,l⊥m 时,若直线m是α与β的交线时,α⊥β,不一定有α∥β,故充分性不成立.
所以,l⊥m是α∥β的必要不充分条件,
故选;C.
当l⊥α,直线m?平面β,l⊥m 时,若直线m是α与β的交线时,α⊥β,不一定有α∥β,故充分性不成立.
所以,l⊥m是α∥β的必要不充分条件,
故选;C.
点评:本题考查充分条件、必要条件的定义,两个平面平行的判定,证明充分性不成立是解题的难点.
练习册系列答案
相关题目
已知命题p:?x0∈R,sinx0+cosx0=
,命题q:对于实数a,b,a2>b2是a>|b|的必要不充分条件,则( )
| 3 |
| 2 |
| A、“p或q”为假 |
| B、“p或?q”为真 |
| C、“p且q”为真 |
| D、“?p且q”为真 |
已知Sn是等差数列{an}n∈N*的前n项和,且S6>S7>S5,给出下列五个命题:
①d<0;②S11>0;③S12<0;④数列{Sn}中最大项为S11;⑤|a6|>|a7|,
其中正确命题的个数( )
①d<0;②S11>0;③S12<0;④数列{Sn}中最大项为S11;⑤|a6|>|a7|,
其中正确命题的个数( )
| A、5 | B、4 | C、3 | D、1 |
某学校在“11•9”举行老师、学生消防知识比赛,报名的学生和教师的人数之比为6:1,学校决定按分层抽样的方法从报名的师生中抽取35人组队进行比赛,已知教师甲被抽到的概率为
,则报名的学生人数是 .
| 1 |
| 10 |
直线xtan
+y+2=0的倾斜角α是( )
| π |
| 3 |
A、
| ||
B、
| ||
C、
| ||
D、-
|