题目内容

18.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有$f(x)>0,f(x+2)=\frac{1}{f(x)}$.则f(2015)=(  )
A.4B.3C.2D.1

分析 先求出函数的周期,再求出f(1),然后f(2015)=f(503×4+3)=f(3)=f(1+2)=$\frac{1}{f(1)}$=1.

解答 解:∵f((x+2)=$\frac{1}{f(x)}$,
∴f(x+4)=$\frac{1}{f(x+2)}$=$\frac{1}{\frac{1}{f(x)}}$=f(x),
所以函数f(x)是周期为4的函数,
∴f(2015)=f(503×4+3)=f(3),
∵对任意x∈R,都有$f(x)>0,f(x+2)=\frac{1}{f(x)}$,
令x=-1得,f(1)=$\frac{1}{f(-1)}$=$\frac{1}{f(1)}$,
∴f(1)=1,
∵f(3)=f(1+2)=$\frac{1}{f(1)}$=1,
故选D.

点评 本题主要考查函数的周期性和奇偶性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网