题目内容
13.设命题$p:?{x_0}∈R,{2^{x_0}}≤0$,则?p是( )| A. | $?{x_0}∈R,{2^{x_0}}≤0$ | B. | $?{x_0}∈R,{2^{x_0}}>0$ | C. | $?{x_0}∈R,{2^{x_0}}>0$ | D. | $?{x_0}∈R,{2^{x_0}}≥0$ |
分析 根据特称命题的否定是全称命题进行求解即可.
解答 解:命题是特称命题,则命题的否定是全称命题,
即$?{x_0}∈R,{2^{x_0}}>0$,
故选:C
点评 本题主要考查含有量词的命题的否定,比较基础.
练习册系列答案
相关题目
9.
我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
| 时间t(天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
| 日销售量y1(万件) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
4.设命题p:?x∈R,2x>0,则¬p为( )
| A. | ?x∈R,2x<0 | B. | ?x∈R,2x<0 | C. | ?x0∈R,2${\;}^{{x}_{0}}$≤0 | D. | ?3x0∈R,2${\;}^{{x}_{0}}$<0 |
5.集合A={-1,5,1},A的子集中,含有元素5的子集共有( )
| A. | 2个 | B. | 4个 | C. | 6个 | D. | 8个 |
3.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.
| 时间x | 1 | 2 | 3 | 4 | 5 |
| 命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.