题目内容
已知函数f(x)的定义域为[0,2],则
的定义域为( )
| f(2x) |
| x |
| A、{x|0<x≤4} |
| B、{x|0≤x≤4} |
| C、{x|0<x≤1} |
| D、{x|0≤x≤1} |
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据复合函数定义域之间的关系,即可得到结论.
解答:
解:∵f(x)的定义域为[0,2],
∴要使函数
有意义,则
,
即
,
解得0<x≤1,
即函数的定义域为{x|0<x≤1},
故选:C
∴要使函数
| f(2x) |
| x |
|
即
|
解得0<x≤1,
即函数的定义域为{x|0<x≤1},
故选:C
点评:本题主要考查函数的定义域的求解,根据复合函数定义域之间的关系是解决本题的关键.
练习册系列答案
相关题目
已知点P是△ABC的内心(三个内角平分线交点)、外心(三条边的中垂线交点)、重心(三条中线交点)、垂心(三个高的交点)之一,且满足2
•
=
2-
2,则点P一定是△ABC的( )
| AP |
| BC |
| AC |
| AB |
| A、内心 | B、外心 | C、重心 | D、垂心 |
函数f(x)=x3-3x-3有零点的区间是( )
| A、(-1,0) |
| B、(0,1) |
| C、(1,2) |
| D、(2,3) |
函数y=log
(x2-6x+10)在区间[1,2]上的最大值是( )
| 1 |
| 5 |
| A、0 | ||
B、log
| ||
C、log
| ||
| D、1 |
已知{an}为等差数列,若
<-1且其前n项和Sn有最大值,则使得Sn>0的n的最大值为( )
| a9 |
| a8 |
| A、16 | B、15 | C、9 | D、8 |
艺术节期间,秘书处派甲,乙,丙,丁四名工作人员分别到A,B,C三个不同的演出场馆工作,每个演出场馆至少派一人,若要求甲,乙两人不能到同一演出场馆工作,则不同的分派方案有( )
| A、36种 | B、30种 |
| C、24种 | D、20种 |
实数x的绝对值不大于2,则可用不等式表示为( )
| A、|x|>2 |
| B、|x|≥2 |
| C、|x|<2 |
| D、|x|≤2 |