ÌâÄ¿ÄÚÈÝ
Ϊ¹á³¹¡°¼¤Ç鹤×÷£¬¿ìÀÖÊýѧ¡±µÄÀíÄijѧУÔÚѧϰ֮Óà¾ÙÐÐȤζ֪ʶÓн±¾ºÈü£¬±ÈÈü·Ö³õÈüºÍ¾öÈüÁ½²¿·Ö£¬ÎªÁËÔö¼Ó½ÚÄ¿µÄȤζÐÔ£¬³õÈü²ÉÓÃÑ¡ÊÖѡһÌâ´ðÒ»ÌâµÄ·½Ê½½øÐУ¬Ã¿Î»Ñ¡ÊÖ×î¶àÓÐ5´ÎÑ¡´ðÌâµÄ»ú»á£¬Ñ¡ÊÖÀۼƴð¶Ô3Ìâ»ò´ð´í3Ìâ¼´ÖÕÖ¹Æä³õÈüµÄ±ÈÈü£¬´ð¶Ô3ÌâÕßÖ±½Ó½øÈë¾öÈü£¬´ð´í3ÌâÕßÔò±»ÌÔÌ£¬ÒÑ֪ѡÊÖ¼×´ðÌâµÄÕýÈ·ÂÊΪ
£®
£¨1£©ÇóÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊ£»
£¨2£©ÉèÑ¡ÊÖ¼×ÔÚ³õÈüÖдðÌâµÄ¸öÊý¦Î£¬ÊÔд³ö¦ÎµÄ·Ö²¼ÁУ¬²¢Çó¦ÎµÄÊýѧÆÚÍû£®
| 2 |
| 3 |
£¨1£©ÇóÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊ£»
£¨2£©ÉèÑ¡ÊÖ¼×ÔÚ³õÈüÖдðÌâµÄ¸öÊý¦Î£¬ÊÔд³ö¦ÎµÄ·Ö²¼ÁУ¬²¢Çó¦ÎµÄÊýѧÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ,ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©Ñ¡ÊÖ¼×´ð3µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ(
)3=
£¬Ñ¡ÊÖ¼×´ð4µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ
(
)2•
•
=
£¬ÓÉ´ËÄÜÇó³öÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊ£®
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£®·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкͦεÄÊýѧÆÚÍû£®
| 2 |
| 3 |
| 8 |
| 27 |
| C | 2 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 8 |
| 27 |
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£®·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкͦεÄÊýѧÆÚÍû£®
½â´ð£º
½â£º£¨1£©Ñ¡ÊÖ¼×´ð3µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ(
)3=
£¬
Ñ¡ÊÖ¼×´ð4µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ
(
)2•
•
=
£¬
¡àÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊP=
+
=
£®£¨4·Ö£©
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£®
ÔòÓÐP(¦Î=3)=(
)3+(
)3=
£¬
P(¦Î=4)=
(
)2•
•
+
(
)2•
•
=
£¬
P(¦Î=5)=
(
)2•(
)2•
+
(
)2•(
)2•
=
£¬
¡àE¦Î=3¡Á
+4¡Á
+5¡Á
=
£®£¨8·Ö£©
| 2 |
| 3 |
| 8 |
| 27 |
Ñ¡ÊÖ¼×´ð4µÀÌâ½øÈë¾öÈüµÄ¸ÅÂÊΪ
| C | 2 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 8 |
| 27 |
¡àÑ¡ÊÖ¼×´ðÌâ´ÎÊý²»³¬¹ý4´Î¿É½øÈë¾öÈüµÄ¸ÅÂÊP=
| 8 |
| 27 |
| 8 |
| 27 |
| 16 |
| 27 |
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£®
ÔòÓÐP(¦Î=3)=(
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
P(¦Î=4)=
| C | 2 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| C | 2 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 10 |
| 27 |
P(¦Î=5)=
| C | 2 4 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| C | 2 4 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 8 |
| 27 |
| ¦Î | 3 | 4 | 5 | ||||||
| P |
|
|
|
| 1 |
| 3 |
| 10 |
| 27 |
| 8 |
| 27 |
| 107 |
| 27 |
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[0£¬2]£¬Ôò
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
| f(2x) |
| x |
| A¡¢{x|0£¼x¡Ü4} |
| B¡¢{x|0¡Üx¡Ü4} |
| C¡¢{x|0£¼x¡Ü1} |
| D¡¢{x|0¡Üx¡Ü1} |