题目内容
19.| A. | -8 | B. | -4 | C. | -3 | D. | 0 |
分析 先根据流程图中即要分析出计算的类型,该题是考查了分段函数,再求出函数的解析式,然后根据解析式求解函数值即可.
解答 解:该算法是一个分段函数y=$\left\{\begin{array}{l}{a×(b+1)}&{a≥b}\\{a×(b-1)}&{a<b}\end{array}\right.$,
原式=2?1-2?3=2×(1+1)-2×(3-1)=0.
故选:D.
点评 根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.
练习册系列答案
相关题目
1.已知a为如图所示的程序框图输出的结果,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中常数项是( )

| A. | 20 | B. | $-\frac{5}{2}$ | C. | -192 | D. | -160 |
2.已知锐角三角形的两个内角A,B满足$tanA-\frac{1}{sin2A}=tanB$,则有( )
| A. | sin2A-cosB=0 | B. | sin2A+cosB=0 | C. | sin2A+sinB=0 | D. | sin2A-sinB=0 |
4.
如图是计算$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{31}$的值的程序框图,则图中①②处应填写的语句分别是( )
①①
①①
| A. | n=n+2,i>16? | B. | n=n+2,i≥16? | C. | n=n+1,i>16? | D. | n=n+1,i≥16? |