题目内容

在△ABC中,其中有两解的是(  )
A、a=8,b=15,A=30°
B、a=30,b=25,A=150°
C、a=72,b=50,A=135°
D、a=18,b=16,A=60°
考点:正弦定理
专题:解三角形
分析:各项利用正弦定理列出关系式,把a,b,sinA的值代入求出sinB的值,即可做出判断.
解答: 解:A、∵a=8,b=15,A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
15×
1
2
8
=
15
16

∵a<b,∴A<B,
则B有两解,符合题意;
B、∵a=30,b=25,A=150°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
25×
1
2
30
=
5
12

∵A为钝角,
∴B只有一解,不合题意;
C、∵a=72,b=50,A=135°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
50×
2
2
72
=
25
2
72

∵A为钝角,∴B只有一解,不合题意;
D、∵a=18,b=20,A=60°,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
20×
3
2
18
=
5
3
9

∵a>b,∴A>B,即B<60°,此时三角形无解,
故选:A.
点评:此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网