题目内容
设正项数列{an}的前n项和Sn,且满足Sn=
a
+
(n∈N*).
(Ⅰ)计算a1,a2,a3的值,猜想{an}的通项公式,并证明你的结论;
(Ⅱ)设Tn是数列{
}的前n项和,证明:Tn<
.
| 1 |
| 2 |
2 n |
| n |
| 2 |
(Ⅰ)计算a1,a2,a3的值,猜想{an}的通项公式,并证明你的结论;
(Ⅱ)设Tn是数列{
| 1 | ||
|
| 4n |
| 2n+1 |
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用递推导思想求出a1=1,a2=2,a3=3.由此猜想an=n,再用数学归纳法进行证明.
(Ⅱ)证法一:由
<
=2(
-
),利用裂项求和法和放缩法进行证明.
证法二:利用用数学归纳法进行证明.
(Ⅱ)证法一:由
| 1 |
| n2 |
| 1 | ||
n2-
|
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
证法二:利用用数学归纳法进行证明.
解答:
(Ⅰ)解:当n=1时,a1=S1=
+
,解得a1=1,
a1+a2=S2=
+1,解得a2=2,
a1+a2+a3=S3=
+
,解得a3=3.
猜想an=n….3分,
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时,ak=k….4分,
则当n=k+1时,ak+1=Sk+1-Sk=
+
-(
+
)=
+
-(
k2+
),
结合an>0,解得ak+1=k+1…..6分,
于是对于一切的自然数n∈N*,都有an=n…7分.
(Ⅱ)证法一:∵
<
=2(
-
),…10分
∴Tn=
+
+…+
<2(1-
+
-
+…+
-
)=2(1-
)=
.…14分
证法二:用数学归纳法证明:
(ⅰ)当n=1时,T1=
=1,
=
,1<
….8分
(ⅱ)假设当n=k时,Tk<
…9分
则当n=k+1时,Tk+1=Tk+
<
+
要证:Tk+1<
只需证:
+
<
由于
-
=
=
>
所以
+
<
…13分
于是对于一切的自然数n∈N*,都有Tn<
….14分
| 1 |
| 2 |
| a | 2 1 |
| 1 |
| 2 |
a1+a2=S2=
| 1 |
| 2 |
| a | 2 2 |
a1+a2+a3=S3=
| 1 |
| 2 |
| a | 2 3 |
| 3 |
| 2 |
猜想an=n….3分,
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时,ak=k….4分,
则当n=k+1时,ak+1=Sk+1-Sk=
| 1 |
| 2 |
| a | 2 k+1 |
| k+1 |
| 2 |
| 1 |
| 2 |
| a | 2 k |
| k |
| 2 |
| 1 |
| 2 |
| a | 2 k+1 |
| k+1 |
| 2 |
| 1 |
| 2 |
| k |
| 2 |
结合an>0,解得ak+1=k+1…..6分,
于是对于一切的自然数n∈N*,都有an=n…7分.
(Ⅱ)证法一:∵
| 1 |
| n2 |
| 1 | ||
n2-
|
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 4n |
| 2n+1 |
证法二:用数学归纳法证明:
(ⅰ)当n=1时,T1=
| 1 |
| 12 |
| 4×1 |
| 2×1+1 |
| 4 |
| 3 |
| 4 |
| 3 |
(ⅱ)假设当n=k时,Tk<
| 4k |
| 2k+1 |
则当n=k+1时,Tk+1=Tk+
| 1 |
| (k+1)2 |
| 4k |
| 2k+1 |
| 1 |
| (k+1)2 |
要证:Tk+1<
| 4(k+1) |
| 2(k+1)+1 |
只需证:
| 4k |
| 2k+1 |
| 1 |
| (k+1)2 |
| 4(k+1) |
| 2(k+1)+1 |
由于
| 4(k+1) |
| 2(k+1)+1 |
| 4k |
| 2k+1 |
| 4 |
| (2k+3)(2k+1) |
| 4 |
| (2k+2)2-1 |
| 1 |
| (k+1)2 |
所以
| 4k |
| 2k+1 |
| 1 |
| (k+1)2 |
| 4(k+1) |
| 2(k+1)+1 |
于是对于一切的自然数n∈N*,都有Tn<
| 4n |
| 2n+1 |
点评:本题考查数列的通项公式的求法和证明,考查不等式的证明,解题时要认真审题,注意数学归纳法的合理运用.
练习册系列答案
相关题目