题目内容
设直线过点(0,a),其斜率为
,且与圆(x-2)2+y2=4相切,则正数a的值为( )
| 3 |
| 4 |
| A、1 | B、2 | C、3 | D、4 |
考点:直线与圆的位置关系
专题:直线与圆
分析:求出直线方程,根据直线和圆相切的等价条件即可求解.
解答:
解:设切线方程为y=
x+a,即3x-4y+4a=0.
直线和圆相切,则圆心到直线的距离d=
=2,
又a>0,解得a=1.
故选:A
| 3 |
| 4 |
直线和圆相切,则圆心到直线的距离d=
| |6+4a| |
| 5 |
又a>0,解得a=1.
故选:A
点评:本题主要考查直线和圆的位置关系的应用,根据直线和圆相切的等价条件是解决本题的关键.
练习册系列答案
相关题目
对于平面α,β,γ和直线a,b,m,n,下列命题中真命题是( )
| A、若α∥β,α∩γ=a,β∩γ=b,则a∥b |
| B、若a∥b,b⊆α,则a∥α |
| C、若a⊆β,b⊆β,a∥α,b∥α,则β∥α |
| D、若a⊥m,a⊥n,m⊆α,n⊆α,则a⊥α |
已知定义在R上的奇函数f(x),当x>0时f(x)=|lnx|,则函数y=f(x)-sinx的零点个数为( )
| A、3个 | B、4个 | C、5个 | D、6个 |
函数f(x)=mcosx+nsinx(mn≠0)的一条对称轴方程为x=
,则以
=(m,n)为方向向量的直线的倾斜角为( )
| π |
| 3 |
| a |
| A、45° | B、60° |
| C、120° | D、135° |