题目内容
12.当a<0时,函数y=$\frac{1}{3}$x3-ax2-3a2x-4在(2,+∞)上是增函数,则实数a的取值范围是( )| A. | (-2,0) | B. | [-2,0) | C. | [-2,1] | D. | (-2,1] |
分析 根据题意,可将问题转化为导函数y′≥0在(2,+∞)上恒成立,即求y′min≥0,运用二次函数的性质即可求得y′min,从而得到关于a的不等关系,求解即可得到a的取值范围.
解答 解:∵y=$\frac{1}{3}$x3-ax2-3a2x-4,
∴y′=x2-2ax-3a2,
∵函数y=$\frac{1}{3}$x3-ax2-3a2x-4在(2,+∞)上是增函数,
∴y′=x2-2ax-3a2≥0在(2,+∞)上恒成立,
∵y′=x2-2ax-3a2=(x-a)2-4a2,
∴对称轴为x=a<0,
∴y′在(2,+∞)单调递增,
∴y′>22-2a×2-3a2=4-4a-3a2≥0,
∴-2≤a≤1,又a<0,
∴-2≤a<0,
∴实数a的取值范围是[-2,0).
故选:B.
点评 本题考查函数单调性的综合运用,函数的单调性对应着导数的正负,若已知函数的单调性,经常会将其转化成恒成立问题解决.属于中档题.
练习册系列答案
相关题目
3.在单位圆中,一条弦AB的长度为$\sqrt{3}$,则该弦AB所对的弧长l为( )
| A. | $\frac{2}{3}$π | B. | $\frac{3}{4}$π | C. | $\frac{5}{6}$π | D. | π |
20.一元二次不等式-x2+4x+5<0的解集为( )
| A. | (-1,5) | B. | (-5,1) | C. | (-∞,-1)∪(5,+∞) | D. | (-∞,-5)∪(1,+∞) |
17.不等式$\frac{x-1}{{{x^2}-x-6}}$≥0的解集为( )
| A. | (-∞,-2)∪(3,+∞) | B. | (-∞,-2)∪[1,3) | C. | (-2,1]∪(3,+∞) | D. | (-2,1)∪[1,3) |
1.调查某桑场采桑员和辅助工关于桑毛虫皮炎发病情况结果如表:
(1)完成2×2列联表;
(2)利用2×2列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?
(参考公式:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 采桑 | 不采桑 | 合计 | |
| 患者人数 | 18 | 12 | |
| 健康人数 | 5 | 78 | |
| 合计 |
(2)利用2×2列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?
| 参考数据 | 当χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联; |
| 当χ2>2.706时,有90%把握判定变量A,B有关联; | |
| 当χ2>3.841时,有95%把握判定变量A,B有关联; | |
| 当χ2>6.635时,有99%把握判定变量A,B有关联. |
2.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如表:
(1)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从E组中抽取了8人.请将其余各组抽取的人数填入如表.
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,设每位评委支持歌手不相互影响,求这2人至少有1人支持1号歌手的概率.
| 组别 | A | B | C | D | E |
| 人数 | 50 | 50 | 150 | 150 | 100 |
| 组别 | A | B | C | D | E |
| 人数 | 50 | 50 | 150 | 150 | 100 |
| 抽取人数 | 8 |