题目内容

8.已知圆C的普通方程为(x-1)2+y2=3,过点M(1,2)的直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数,α为直线l的倾斜角).
(1)若直线l被圆C截得的弦AB的长为2,求直线l的倾斜角;
(2)求过点M引圆C的切线的倾斜角.

分析 (1)将圆C的普通方程转化为参数方程,表示出|AB|的长,求出直线的倾斜角即可;
(2)直线和圆相切时,得到(4sinα)2-4=0,求出α的值即可.

解答 解:(1)将x=1+tcosα,y=2+tsinα,代入(x-1)2+y2=3,
得(tcosα)2+(2+tsinα)2=3,即t2+4tsinα+1=0.                          (2分)
设这个方程的根为t1,t2,则$|AB|=|{t_1}-{t_2}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{{{(-4sinα)}^2}-4}=2\sqrt{4{{sin}^2}α-1}$.           (4分)
∵|AB|=2,∴$4{sin^2}α-1=1⇒sinα=\frac{{\sqrt{2}}}{2}$,其中0≤α<π.                (5分)
∴${α_1}=\frac{π}{4},{α_2}=\frac{3π}{4}$.                                                       (6分)
故直线l的倾斜角为$\frac{π}{4}$或$\frac{3π}{4}$.                                               (7分)
(2)当直线l与圆C相切时,方程t2+4tsinα+1=0的△=0,
即(4sinα)2-4=0.(9分)
∴${sin^2}α=\frac{1}{4}⇒sinα=\frac{1}{2}$,其中0≤α<π.                                   (10分)
∴${α_1}=\frac{π}{6},{α_2}=\frac{5π}{6}$.                                                   (11分)
故直线l的倾斜角为$\frac{π}{6}$或$\frac{5π}{6}$.                                           (12分)

点评 本题考查了参数方程的应用,考查直线和圆的位置关系以及三角函数求值问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网