题目内容

已知ω>0,函数f(x)=cos(ωx+
π
4
)在(
π
2
,π)上单调递增,则ω的取值范围是(  )
A、[
1
2
5
4
]
B、[
1
2
7
4
]
C、[
3
4
9
4
]
D、[
3
2
7
4
]
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:根据函数y=cosx的单调递增区间,结合函数在(
π
2
,π)上单调递增,得出关于ω的不等式(组),从而求出ω的取值范围.
解答: 解:∵函数y=cosx的单调递增区间是[-π+2kπ,2kπ],k∈Z;
∴-π+2kπ≤ωx+
π
4
<ωπ+
π
4
≤2kπ,k∈Z;
解得:
-5π
+
2kπ
ω
≤x≤
2kπ
ω
-
π
(k∈Z),
∵函数f(x)=cos(ωx+
π
4
)在(
π
2
,π)上单调递增,
∴(
π
2
,π)⊆[
-5π
+
2kπ
ω
2kπ
ω
-
π
](k∈Z),
解得4k-
5
2
≤ω≤2k-
1
4

又∵4k-
5
2
-(2k-
1
4
)≤0,且2k-
1
4
>0,
∴k=1,
∴ω∈[
3
2
7
4
].
故选:D.
点评:本题考查了三角函数的图象与性质的应用问题,解题的关键是列出关于ω的不等式(组),是易错题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网