题目内容
sin(65°-x)cos(x-20°)-cos(65°-x)sin(20°-x)的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式第二项第二个因式利用正弦函数为奇函数变形后,利用两角和与差的正弦函数公式化简,计算即可得到结果.
解答:
解:原式=sin(65°-x)cos(x-20°)+cos(65°-x)sin(x-20°)=sin(65°-x+x-20°)=sin45°=
.
故选:B.
| ||
| 2 |
故选:B.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目
已知点P的极坐标是(1,
),则以点P为圆心,1为半径的圆的极坐标方程是( )
| π |
| 4 |
A、ρ=cos(θ-
| ||
B、ρ=cos(θ+
| ||
C、ρ=2cos(θ-
| ||
D、ρ=2cos(θ+
|
算法如图,若输入m=210,n=119,则输出的n为( )

| A、2 | B、3 | C、7 | D、11 |
若三个三角形的三边长分别为:(1)4、6、8;(2)10、24、26;(3)10、12、14.则其中分别为锐角三角形、直角三角形、钝角三角形的是( )
| A、(1)(2)(3) |
| B、(3)(2)(1) |
| C、(2)(3)(1) |
| D、(3)(1)(2) |
已知sin(
+α)=
,则cosα的值为( )
| 3π |
| 2 |
| 1 |
| 2 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
不等式2x-y>0表示的平面区域(阴影部分)为( )
| A、 |
| B、 |
| C、 |
| D、 |
已知
是单位向量,|
|=
,且(2
+
)•(
-
)=4-
,则
与
的夹角为( )
| a |
| b |
| 6 |
| a |
| b |
| b |
| a |
| 3 |
| a |
| b |
| A、45° | B、60° |
| C、120° | D、135° |