题目内容
20.已知物体的运动方程为s=$\frac{1}{4}{t^4}-4{t^3}+16{t^2}$(t表示时间,单位:秒;s表示位移,单位:米),则瞬时速度为0米每秒的时刻是( )| A. | 0秒、2秒或4秒 | B. | 0秒、2秒或16秒 | C. | 0秒、4秒或8秒 | D. | 2秒、8秒或16秒 |
分析 对物体的运动方程求导为瞬时速度,令其为0得瞬时速度为0米每秒的时刻.
解答 解:s′=t3-12t2+32t
令s′=t3-12t2+32t=0得
t=0或 t=4或t=8
故选:C.
点评 考查导数在物理中的应用:位移求导为瞬时速度.
练习册系列答案
相关题目
11.探究函数$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
10.已知$\frac{m}{1-i}=1+ni$,其中m、n是实数,i是虚数单位,则m+ni=( )
| A. | 1+2i | B. | 1-2i | C. | 2+i | D. | 2-i |