题目内容
19.已知函数f(x)=cosωx+$\sqrt{3}$cosωx(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为( )| A. | $\frac{1}{4032π}$ | B. | $\frac{1}{2016π}$ | C. | $\frac{1}{4032}$ | D. | $\frac{1}{2016}$ |
分析 由题意得区间[x0,x0+2016π]能够包含函数的至少一个完整的单调区间,利用两角和的余弦公式求得f(x),再根据2016π≥$\frac{1}{2}$×$\frac{2π}{ω}$,求得ω的最小值.
解答 解:由题意可得,f(x0)是函数f(x)的最小值,
f(x0+2016π)是函数f(x)的最大值;
要使结论成立,只需保证区间
[x0,x0+2016π]能够包含函数的至少一个完整的单调区间即可;
又f(x)=cosωx+$\sqrt{3}$cosωx=($\sqrt{3}$+1)cosωx,
故2016π≥$\frac{1}{2}$×$\frac{2π}{ω}$,求得ω≥$\frac{1}{2016}$,
故ω的最小值为$\frac{1}{2016}$.
故选:D.
点评 本题主要考查了余弦函数的图象与性质的应用问题,属于中档题目.
练习册系列答案
相关题目
11.哈六中数学组推出微信订阅号(公众号hl15645101785)后,受到家长和学生们的关注,为了更好的为学生和家长提供帮助,我们在某时间段在线调查了60位更关注栏目1或栏目2(2选一)的群体身份样本得到如下列联表,已知在样本中关注栏目1与关注栏目2的人数比为2:1,在关注栏目1中的家长与学生人数比为5:3,在关注栏目2中的家长与学生人数比为1:3
(1)完成列联表,并根据列联表的数据,若按99%的可靠性要求,能否认为“更关注栏目1或栏目2与群体身份有关系”;
(2)如果把样本频率视为概率,随机回访两位关注者,更关注栏目1的人数记为随机变量X,求X的分布列和期望;
(3)由调查样本对两个栏目的关注度,请你为数学组教师提供建议应该更侧重充实哪个栏目的内容,并简要说明理由.
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)
| 栏目1 | 栏目2 | 合计 | |
| 家长 | |||
| 学生 | |||
| 合计 |
(2)如果把样本频率视为概率,随机回访两位关注者,更关注栏目1的人数记为随机变量X,求X的分布列和期望;
(3)由调查样本对两个栏目的关注度,请你为数学组教师提供建议应该更侧重充实哪个栏目的内容,并简要说明理由.
| P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
10.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)( )
| A. | ($\frac{ln4}{3}$,+∞) | B. | ($\frac{ln2}{3}$,+∞) | C. | ($\frac{\sqrt{3}}{2}$,+∞) | D. | ($\frac{\sqrt{e}}{3}$,+∞) |