题目内容

8.(Ⅰ)化简$\frac{sin(2π-α)tan(α+π)tan(-α)}{cos(π-α)tan(3π-α)}$.
(Ⅱ)计算$cos\frac{25π}{6}+cos\frac{25π}{3}+tan({-\frac{25π}{4}})+sin\frac{5π}{6}$.

分析 (1)利用诱导公式,同角三角函数基本关系式化简即可得解;
(2)利用诱导公式,特殊角的三角函数值即可化简求值得解.

解答 本大题共2个小题,每小题5分,共10分
解:(1)原式=$\frac{sin(-α)tanαtan(-α)}{-cosα(-tanα)}$…(2分)
=$\frac{-sinαtanα(-tanα)}{cosαtanα}$…(3分)
=tanαtanα
=tan2α.…(5分)
(2)$cos\frac{25π}{6}+cos\frac{25π}{3}+tan({-\frac{25π}{4}})+sin\frac{5π}{6}$
$\begin{array}{l}=cos(4π+\frac{π}{6})+cos(8π+\frac{π}{3})+tan(-6π-\frac{π}{4})+\frac{1}{2}…(7分)\\=cos\frac{π}{6}+cos\frac{π}{3}+tan(-\frac{π}{4})+\frac{1}{2}…(8分)\\=\frac{{\sqrt{3}}}{2}+\frac{1}{2}-1+\frac{1}{2}=\frac{{\sqrt{3}}}{2}…(10分)\end{array}$

点评 本题主要考查了诱导公式,同角三角函数基本关系式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网