题目内容
19.已知|$\overrightarrow{a}$|=6,$\overrightarrow{e}$为单位向量,当$\overrightarrow{a}$与$\overrightarrow{e}$之间的夹角为120°时,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影为-3.分析 由题意可得,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影为|$\overrightarrow{a}$|×cos120°,计算求得结果.
解答 解:当$\overrightarrow{a}$与$\overrightarrow{e}$之间的夹角为120°时,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影为:|$\overrightarrow{a}$|×cos120°=6×(-$\frac{1}{2}$)=-3.
故答案是:-3.
点评 本题主要考查一个向量在另一个向量上的投影的定义,属于基础题.
练习册系列答案
相关题目
18.函数y=$\sqrt{1-{3}^{x}}$的定义域是( )
| A. | [0,+∞) | B. | (-∞,0] | C. | [1,+∞) | D. | (-∞,+∞) |
14.已知x,y∈R,命题p:若x>|y|,则x>y;命题q:若x+y>0,则x2>y2,在命题(1)p∨q;(2)(¬p)∧(¬q);(3)p∧(¬q);(4)p∧q中,证明题的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
11.如表是某商店每月某种商品的销售额(用y表示,单位:万元)与月份(t)的关系对照表.
其中$\overline{y}$=10,$\sum_{i=1}^{5}$tiyi=163.请建立y关于t的回归方程(系数精确到0.01)并预测6月份这种商品的销售额.
参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
| 月份(t) | 1 | 2 | 3 | 4 | 5 |
| 销售额(y) | y1 | y2 | y3 | y4 | y5 |
参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
8.给出如下四个命题,其中正确的命题为( )
| A. | 若“p且q”为假命题,则p、q均为假命题 | |
| B. | 命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1” | |
| C. | “?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1” | |
| D. | 在△ABC中,“A>B”是“sinA>sinB”的充分不必要条件 |
9.若不等式mx2+x+n>0的解集是{x|-$\frac{1}{3}$<x<$\frac{1}{2}$},则m,n分别是( )
| A. | 6,-1 | B. | -6,-1 | C. | 6,1 | D. | -6,1 |