题目内容

8.已知函数f(x)=cos(2x-$\frac{π}{3}$)-cos(2x+$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)设向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,t)(t≠0),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若f(α)=1,求实数t的值.

分析 (1)将f(x)展开,使用二倍角公式与和差公式化简;
(2)由f(α)=1解出α,结合图形得出t.

解答 解:(1)f(x)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+cos2x=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ.
∴函数f(x)的单调递增区间是[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z.
(2)∵f(α)=2sin(2α+$\frac{π}{6}$)=1,∴sin(2α+$\frac{π}{6}$)=$\frac{1}{2}$.∴2α+$\frac{π}{6}$=$\frac{π}{6}$+2kπ,或2α+$\frac{π}{6}$=$\frac{5π}{6}$+2kπ.
∵α∈[0,π],∴α=0,或α=π,或α=$\frac{π}{3}$.
若α=0,则$\overrightarrow{b}$=2$\overrightarrow{a}$,∴t=0(舍去).若α=π,则$\frac{1}{2}=\frac{0}{t}<0$,无解.若α=$\frac{π}{3}$,则$\frac{t}{2}$=tan$\frac{π}{3}$,或$\frac{t}{2}$=-tan$\frac{π}{3}$,解得t=2$\sqrt{3}$或t=-2$\sqrt{3}$.

点评 本题考查了三角函数的恒等变换与性质,三角函数求值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网