题目内容
8.已知函数f(x)=cos(2x-$\frac{π}{3}$)-cos(2x+$\frac{π}{3}$)+2cos2x-1,x∈R.(1)求函数f(x)的单调递增区间;
(2)设向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,t)(t≠0),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若f(α)=1,求实数t的值.
分析 (1)将f(x)展开,使用二倍角公式与和差公式化简;
(2)由f(α)=1解出α,结合图形得出t.
解答 解:(1)f(x)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+cos2x=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ.
∴函数f(x)的单调递增区间是[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z.
(2)∵f(α)=2sin(2α+$\frac{π}{6}$)=1,∴sin(2α+$\frac{π}{6}$)=$\frac{1}{2}$.∴2α+$\frac{π}{6}$=$\frac{π}{6}$+2kπ,或2α+$\frac{π}{6}$=$\frac{5π}{6}$+2kπ.
∵α∈[0,π],∴α=0,或α=π,或α=$\frac{π}{3}$.
若α=0,则$\overrightarrow{b}$=2$\overrightarrow{a}$,∴t=0(舍去).若α=π,则$\frac{1}{2}=\frac{0}{t}<0$,无解.若α=$\frac{π}{3}$,则$\frac{t}{2}$=tan$\frac{π}{3}$,或$\frac{t}{2}$=-tan$\frac{π}{3}$,解得t=2$\sqrt{3}$或t=-2$\sqrt{3}$.
点评 本题考查了三角函数的恒等变换与性质,三角函数求值,属于中档题.
| A. | -1+(-1)=2 | B. | $\frac{1}{2}$+$\frac{1}{3}$=$\frac{1}{5}$ | ||
| C. | 23•2n-1=23n-3 | D. | $\frac{1}{101}$+$\frac{1}{202}$+$\frac{1}{303}$+$\frac{1}{606}$=$\frac{2}{101}$ |
| A. | 4 | B. | ±2 | C. | ±4 | D. | $\frac{1}{4}$ |
| A. | $1-\frac{π}{4}$ | B. | 2 | C. | $1+\frac{π}{4}$ | D. | π-1 |
| A. | {0,1} | B. | {2,3,4,5} | C. | {0,2,3,4,5} | D. | {1,2,3,4,5} |
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
| A. | z的虚部为4i | B. | z的共轭复数为1-4i | ||
| C. | |z|=5 | D. | z在复平面内对应的点在第二象限 |