题目内容
数列{an}是等差数列且a2=4,a4=5,数列{bn}的前n项和为Sn,且2Sn=3bn-3(n∈N*)
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)利用等差数列的通项公式由已知条件求出首项和公差,由此能求出an=
+3.由2Sn=3bn-3,推导出{bn}是以3为首项,3为公比的等比数列,由此求出bn=3n.
(Ⅱ)由anbn=(
+3)•3n=
•3n,利用错位相减法能求出数列{anbn}的前n项和.
| n |
| 2 |
(Ⅱ)由anbn=(
| n |
| 2 |
| 6+n |
| 2 |
解答:
解:(Ⅰ)∵数列{an}是等差数列且a2=4,a4=5,
∴
,解得a1=
,d=
,
∴an=
+(n-1)×
=
+3.
∵2Sn=3bn-3,①
∴2Sn-1=3bn-1-3,n≥2,②
①-②,得2bn=3bn-3bn-1,
∴
=3,
又2b1=3b1-3,解得b1=3,
∴{bn}是以3为首项,3为公比的等比数列,
∴bn=3n.
(Ⅱ)∵anbn=(
+3)•3n=
•3n,
∴Tn=
•3+
•32+…+
•3n,①
3Tn=
•32+
•33+…+
•3n+1,②
①-②,-2Tn=
•3+
(32+33+…+3n)-
•3n+1
=
+
•
-
•3n+1
=
+
•3n+1-
-
•3n+1,
∴Tn=
•3n+1-
-
•3n+1.
∴
|
| 7 |
| 2 |
| 1 |
| 2 |
∴an=
| 7 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
∵2Sn=3bn-3,①
∴2Sn-1=3bn-1-3,n≥2,②
①-②,得2bn=3bn-3bn-1,
∴
| bn |
| bn-1 |
又2b1=3b1-3,解得b1=3,
∴{bn}是以3为首项,3为公比的等比数列,
∴bn=3n.
(Ⅱ)∵anbn=(
| n |
| 2 |
| 6+n |
| 2 |
∴Tn=
| 7 |
| 2 |
| 8 |
| 2 |
| 6+n |
| 2 |
3Tn=
| 7 |
| 2 |
| 8 |
| 2 |
| 6+n |
| 2 |
①-②,-2Tn=
| 7 |
| 2 |
| 1 |
| 2 |
| 6+n |
| 2 |
=
| 21 |
| 2 |
| 1 |
| 2 |
| 9(1-3n-1) |
| 1-3 |
| 6+n |
| 2 |
=
| 21 |
| 2 |
| 1 |
| 4 |
| 9 |
| 4 |
| 6+n |
| 2 |
∴Tn=
| 6+n |
| 4 |
| 33 |
| 4 |
| 1 |
| 8 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目