题目内容

已知|
OA
|=1,|
OB
|=k,∠AOB=
3
,点C在∠AOB内,
OC
OA
=0,若
OC
=2m
OA
+m
OB
,|
OC
|=2
3
,则k=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:对等式
OC
=2m
OA
+m
OB
两边同乘以
OA
并根据已知条件可得:2m-
km
2
=0,m≠0,所以能求出k来.
解答: 解:根据已知条件知:
OC
OA
=2m
OA
OA
+m
OB
OA

2m-
km
2
=0,∵m≠0;
∴2-
k
2
=0,k=4.
故答案为:4.
点评:考查数量积的计算公式:
a
b
=|
a
||
b
|cosθ
θ为
a
b
夹角
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网