题目内容
已知|
|=1,|
|=k,∠AOB=
,点C在∠AOB内,
•
=0,若
=2m
+m
,|
|=2
,则k= .
| OA |
| OB |
| 2π |
| 3 |
| OC |
| OA |
| OC |
| OA |
| OB |
| OC |
| 3 |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:对等式
=2m
+m
两边同乘以
并根据已知条件可得:2m-
=0,m≠0,所以能求出k来.
| OC |
| OA |
| OB |
| OA |
| km |
| 2 |
解答:
解:根据已知条件知:
•
=2m
•
+m
•
;
2m-
=0,∵m≠0;
∴2-
=0,k=4.
故答案为:4.
| OC |
| OA |
| OA |
| OA |
| OB |
| OA |
2m-
| km |
| 2 |
∴2-
| k |
| 2 |
故答案为:4.
点评:考查数量积的计算公式:
•
=|
||
|cosθ,θ为
,
夹角.
| a |
| b |
| a |
| b |
| a |
| b |
练习册系列答案
相关题目
函数y=lg|x|的图象大致是( )
| A、 |
| B、 |
| C、 |
| D、 |