题目内容
4.在锐角△ABC中,a,b,c分别是角A,B,C所对的边,且$\sqrt{3}$a=2csinA.(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,求△ABC面积的最大值.
分析 (I)利用正弦定理即可得出.
(2)利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.
解答 解:(Ⅰ)∵$\frac{a}{sinA}=\frac{2c}{{\sqrt{3}}}=\frac{c}{sinC}$,∴$sinC=\frac{{\sqrt{3}}}{2}$,又C是锐角,∴$C=\frac{π}{3}$.
(Ⅱ)∵$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{{a^2}+{b^2}-7}}{2ab}=\frac{1}{2}$,
∴a2+b2-7=ab≥2ab-7,∴ab≤7,
∴${S_{△ABC}}=\frac{1}{2}absinC=\frac{{\sqrt{3}}}{4}ab≤\frac{{7\sqrt{3}}}{4}$,
当且仅当$a=b=\sqrt{7}$时,△ABC的面积有最大值$\frac{{7\sqrt{3}}}{4}$.
点评 本题考查了正弦定理余弦定理、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.f(x)=2sinx在x=$\frac{π}{3}$处的切线斜率为( )
| A. | 0 | B. | 1 | C. | 2 | D. | $\frac{1}{2}$ |
15.已知函数f(x)=cos2x(x∈R),下面结论错误的是( )
| A. | 函数f(x)的最小正周期为π | B. | 函数f(x)是偶函数 | ||
| C. | 函数f(x)的图象关于直线$x=\frac{π}{4}$对称 | D. | 函数f(x)在区间$[{0,\frac{π}{2}}]$上是减函数 |
16.已知tanθ=$\frac{4}{3}$,θ∈(0,$\frac{π}{2}$),则cos($\frac{2π}{3}$-θ)=( )
| A. | $\frac{3}{10}$ | B. | -$\frac{3}{10}$ | C. | $\frac{4\sqrt{3}-3}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |
13.750°化成弧度为( )
| A. | $\frac{28}{3}$πrad | B. | $\frac{25}{6}$πrad | C. | $\frac{23}{6}$πrad | D. | $\frac{23}{3}$πrad |