ÌâÄ¿ÄÚÈÝ

3£®ÒÑÖªÔ²OµÄ·½³ÌΪx2+y2=100£®
£¨1£©¹ýµãA£¨10£¬20£©ÒýÔ²OµÄÇÐÏߣ¬ÇóÇÐÏߵķ½³Ì£»
£¨2£©ÓÉÖ±Ïßl£ºy=x+18ÉÏÒ»µãÒýÔ²OµÄÇÐÏߣ¬ÇóÇÐÏß³¤µÄ×îСֵ£»
£¨3£©ÒÑÖªÖ±Ïßy=kx+3ÓëÔ²O½»ÓÚM£¬NÁ½µã£¬Èô|MN|¡Ý6$\sqrt{11}$£¬ÇókµÄȡֵ·¶Î§£»
£¨4£©ÉèÔ²O¹ýµãM£¨3£¬5£©µÄ×ÏÒºÍ×î¶ÌÏÒ·Ö±ðΪACºÍBD£¬ÇóËıßÐÎABCDµÄÃæ»ý£»
£¨5£©ÉèACºÍBDΪԲOµÄÁ½ÌõÏ໥´¹Ö±µÄÏÒ£¬ÇÒ´¹×ãΪM£¨3£¬5£©£¬ÇóËıßÐÎABCDµÄÃæ»ýµÄ×î´óÖµ£»
£¨6£©ÈôÔ²OÉÏÓÐÇÒÖ»ÓÐ4¸öµãµ½Ö±Ïßl£ºx+y+¦Ë=0µÄ¾àÀëΪ1£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Éè¹ýA£¨10£¬20£©µÄÇÐÏß·½³ÌΪkx-y-10k+20=0£¬ÓÉ$\frac{|20|}{\sqrt{{k}^{2}+1}}$=10£¬ÄÜÇó³öÇÐÏß·½³Ì£®
£¨2£©ÏÈÇó³öÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl£ºy=x+18µÄ¾àÀëd£¬ÔÙÓÉÔ²°ë¾¶r=10£¬ÄÜÇó³öÇÐÏß³¤µÄ×îСֵ£®
£¨3£©ÓÉÔ²ÐÄ£¨0£¬0£©µ½Ö±Ïßy=kx+3µÄ¾àÀëd¡Ü$\sqrt{100-99}$=1£¬ÄÜÇó³ö½á¹û£®£®
£¨4£©Ô²O¹ýµãM£¨3£¬5£©µÄ×ÏÒÊÇÖ±¾¶£¬×î¶ÌÏÒÊÇ´¹Ö±ÓÚÖ±ÏßµÄÏÒ£¬ÓÉ´ËÄÜÇó³öËıßÐÎABCDµÄÃæ»ý£®
£¨5£©Éèd1£¬d2·Ö±ðÊÇÔ²Oµ½AC£¬BDµÄ¾àÀ룬Ôò${{d}_{1}}^{2}+{{d}_{2}}^{2}$=9+25=34£¬ÓÉ»ù±¾²»µÈʽÇó³ö${d}_{1}={d}_{2}=\sqrt{17}$ʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡×î´óÖµ£®
£¨6£©µãµ½Ö±Ïß¾àÀ빫ʽÓУºÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl£ºx+y+¦Ë=0µÄ¾àÀëd=$\frac{|¦Ë|}{\sqrt{2}}$£¬ÓÉ´ËÄÜÇó³öʵÊý¦ËµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©Ô²O£ºx2+y2=100µÄÔ²ÐÄO£¨0£¬0£©£¬°ë¾¶r=10£¬
Éè¹ýA£¨10£¬20£©µÄÇÐÏß·½³ÌΪy-20=k£¨x-10£©£¬¼´kx-y-10k+20=0£¬
¡à$\frac{|20|}{\sqrt{{k}^{2}+1}}$=10£¬½âµÃk=$¡À\sqrt{3}$£¬
¡àÇÐÏß·½³ÌΪy=$¡À\sqrt{3}$£¨x-10£©+20£®
£¨2£©¡ßÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl£ºy=x+18µÄ¾àÀëd=$\frac{|18|}{\sqrt{2}}$=9$\sqrt{2}$£¬
Ô²°ë¾¶r=10£¬
¡àÇÐÏß³¤µÄ×îСֵΪ£º$\sqrt{{d}^{2}-{r}^{2}}$=$\sqrt{162-100}$=$\sqrt{62}$£®
£¨3£©¡ßÖ±Ïßy=kx+3ÓëÔ²O½»ÓÚM£¬NÁ½µã£¬|MN|¡Ý6$\sqrt{11}$£¬
¡àÔ²ÐÄ£¨0£¬0£©µ½Ö±Ïßy=kx+3µÄ¾àÀëd=$\frac{|3|}{\sqrt{{k}^{2}+1}}$¡Ü$\sqrt{100-99}$=1£¬
½âµÃk$¡Ý2\sqrt{2}$»òk¡Ü-2$\sqrt{2}$£®
£¨4£©¡ßÔ²O£ºx2+y2=100µÄÔ²ÐÄO£¨0£¬0£©£¬°ë¾¶r=10£¬
Ô²O¹ýµãM£¨3£¬5£©µÄ×ÏÒºÍ×î¶ÌÏÒ·Ö±ðΪACºÍBD£¬
¡àAC=20£¬BD=2$\sqrt{100-£¨\sqrt{{3}^{2}+{5}^{2}}£©^{2}}$=2$\sqrt{66}$£¬
¡àËıßÐÎABCDµÄÃæ»ýS=$\frac{1}{2}¡Á20¡Á2\sqrt{66}$=20$\sqrt{66}$£®
£¨5£©Éèd1£¬d2·Ö±ðÊÇÔ²Oµ½AC£¬BDµÄ¾àÀ룬Ôò${{d}_{1}}^{2}+{{d}_{2}}^{2}$=9+25=34£¬
¡àËıßÐÎABCDµÄÃæ»ýS=S¡÷CAD+S¡÷CAB=$\frac{1}{2}•AC•BD$
=$\frac{1}{2}•2\sqrt{100-{{d}_{1}}^{2}}•2\sqrt{100-{{d}_{2}}^{2}}$=2$\sqrt{£¨100-{{d}_{1}}^{2}£©£¨100-{{d}_{2}}^{2}£©}$
=2$\sqrt{10{0}^{2}-100£¨{{d}_{1}}^{2}+{{d}_{2}}^{2}£©+£¨{d}_{1}{d}_{2}£©^{2}}$
=2$\sqrt{6600+£¨{d}_{1}{d}_{2}£©^{2}}$¡Ü2$\sqrt{6600+£¨\frac{{{d}_{1}}^{2}+{{d}_{2}}^{2}}{2}£©^{2}}$=2$\sqrt{6600+289}$=166£®
¡à${d}_{1}={d}_{2}=\sqrt{17}$ʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡×î´óÖµ166£®
£¨6£©¡ßÔ²OÉÏÓÐÇÒÖ»ÓÐ4¸öµãµ½Ö±Ïßl£ºx+y+¦Ë=0µÄ¾àÀëΪ1£¬
µãµ½Ö±Ïß¾àÀ빫ʽÓУºÔ²ÐÄO£¨0£¬0£©µ½Ö±Ïßl£ºx+y+¦Ë=0µÄ¾àÀëΪ£º
d=$\frac{|¦Ë|}{\sqrt{2}}$=1£¬½âµÃ¦Ë=$¡À\sqrt{2}$£¬
¡à-$\sqrt{2}£¼¦Ë£¼\sqrt{2}$£¬
¡àʵÊý¦ËµÄȡֵ·¶Î§ÊÇ£¨-$\sqrt{2}$£¬$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÇÐÏߵķ½³Ì¡¢ÇÐÏß³¤µÄ×îСֵ¡¢ÊµÊýȡֵ·¶Î§¡¢ËıßÐÎÃæ»ýµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖÊ¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø