题目内容
△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab的值为( )
A、
| ||
B、8-4
| ||
| C、1 | ||
D、
|
考点:余弦定理
专题:计算题,解三角形
分析:将(a+b)2-c2=4化为c2=(a+b)2-4=a2+b2+2ab-4,又C=60°,再利用余弦定理得c2=a2+b2-2abcosC=a2+b2-ab即可求得答案.
解答:
解:∵△ABC的边a、b、c满足(a+b)2-c2=4,
∴c2=(a+b)2-4=a2+b2+2ab-4,
又C=60°,由余弦定理得c2=a2+b2-2abcosC=a2+b2-ab,
∴2ab-4=-ab,
∴ab=
.
故选:A.
∴c2=(a+b)2-4=a2+b2+2ab-4,
又C=60°,由余弦定理得c2=a2+b2-2abcosC=a2+b2-ab,
∴2ab-4=-ab,
∴ab=
| 4 |
| 3 |
故选:A.
点评:本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.
练习册系列答案
相关题目
若三球的表面积之比为1:2:3,则其体积之比为( )
| A、1:2:3 | ||||
B、1:
| ||||
C、1:2
| ||||
| D、1:4:7 |
若x,y满足约束条件
,则z=y-2x的最大值为( )
|
| A、-2 | B、-4 | C、2 | D、4 |
在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N*),其中λ>0,则a2014=( )
| A、2014λ2014+22014 |
| B、2013λ2013+22013 |
| C、2014λ2013+22013 |
| D、2013λ2014+22014 |
已知向量
=(1,2x),
=(4,-x),则“x=
”是“
⊥
”的( )
| a |
| b |
| 2 |
| a |
| b |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |