题目内容
1.等比数列{an}满足a1=3,an+1=-$\frac{1}{2}$an,则Sn=2+(-$\frac{1}{2}$)n-1.分析 由已知等比数列{an}满足a1=3,q=-$\frac{1}{2}$,由此能求出Sn.
解答 解:∵等比数列{an}满足a1=3,an+1=-$\frac{1}{2}$an,
∴q=$\frac{{a}_{n+1}}{{a}_{n}}$=-$\frac{1}{2}$,
Sn=$\frac{3[1-(-\frac{1}{2})^{n}]}{1-(-\frac{1}{2})}$=2-2(-$\frac{1}{2}$)n=2+(-$\frac{1}{2}$)n-1.
故答案为:2+(-$\frac{1}{2}$)n-1.
点评 本题考查等比数列的前n项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目
11.已知a∈R,则“a>b”是“a3>b3”( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
12.在同一坐标系中,函数y=-2x与y=-$\frac{3}{x}$的图象的交点在( )
| A. | 第一,三象限 | B. | 第二,四象限 | C. | 第四象限 | D. | 不存在 |
9.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,10)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是( )
| A. | $\frac{5}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{5}{9}$ |
6.已知抛物线C:y2=2px(p>0)的焦点为F,点A,B在C上,且点F是△AOB的重心,则cos∠AFB为( )
| A. | -$\frac{3}{5}$ | B. | -$\frac{7}{8}$ | C. | -$\frac{11}{12}$ | D. | -$\frac{23}{25}$ |