题目内容

8.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是5.

分析 作出不等式组对应的平面区域.根据三角形的面积求出a的值,利用数形结合进行求解即可.

解答 解:不等式组等价为$\left\{\begin{array}{l}{(y-2x)(y+2x)≤0}\\{0≤x≤a}\end{array}\right.$,
 即$\left\{\begin{array}{l}{y-2x≥0}\\{y+2x≤0}\\{0≤x≤a}\end{array}\right.$ 或$\left\{\begin{array}{l}{y-2x≤0}\\{y+2x≥0}\\{0≤x≤a}\end{array}\right.$,

则A(a,-2a),B(a,2a),
由S△OAB=$\frac{1}{2}$•4a•a=2,得a=1.
∴B(1,2),
由z=x+2y得y=$-\frac{1}{2}$x+$\frac{z}{2}$,
∴当y=$-\frac{1}{2}$x+$\frac{z}{2}$过B点时,z最大,z=1+2×2=5.
故答案为:5

点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网