题目内容
7.将(2x2-x+1)8展开且合并同类项之后的式子中x5的系数是-1288.分析 x5 可能是(-x)5,(2x2)(-x)3,(2x2)2(-x),由此利用排列组合知识能求出将(2x2-x+1)8展开且合并同类项之后的式子中x5的系数.
解答 解:x5 可能是(-x)5,(2x2)(-x)3,(2x2)2(-x),
根据排列组合知识来看
(-x)5表示在8个式子中5个选-x,其余3个选出1,系数为:(-1)5•${C}_{8}^{5}•{1}^{3}$=-56,
(2x2)(-x)3表示8个式子中1个选2x2,其余7个中3个选(-x),其余选1,
系数为:${C}_{8}^{1}•2•{C}_{7}^{3}(-1)^{3}•1{\;}^{4}$=-560,
(2x2)2(-x)表示8个式子中2个选2x2,其余6个中选1个(-x),其余选1,
系数为:${C}_{8}^{2}•{2}^{2}•{C}_{6}^{1}(-1)•{1}^{5}$=-672,
∴将(2x2-x+1)8展开且合并同类项之后的式子中x5的系数为:-56-560-672=-1288.
故答案为:-1288.
点评 本题考查二项式展开式中x5的系数的求法,考查二项式定理、通项公式、二项式系数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
练习册系列答案
相关题目
6.下列命题正确的是( )
| A. | 命题“?x∈R,使得x2-1<0”的否定是:?x∈R,均有x2-1<0 | |
| B. | 命题“若x=3,则x2-2x-3=0”的否命题是:若x≠3,则x2-2x-3≠0 | |
| C. | “$α=2kπ+\frac{π}{3}(k∈Z)$”是“$sin2α=\frac{{\sqrt{3}}}{2}$”的必要而不充分条件 | |
| D. | 命题“cosx=cosy,则x=y”的逆否命题是真命题 |
7.已知$sin(\frac{π}{3}-\frac{α}{2})=-\frac{{\sqrt{3}}}{2}$,则$cos(\frac{π}{3}+α)$=( )
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
12.已知研究x与y之间关系的一组数据如表所示:
则y对x的回归直线方程$\stackrel{∧}{y}$=bx+a必过点( )
| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 3.5 | 5.5 | 7 | 8 |
| A. | (1,4) | B. | (2,5) | C. | (3,7) | D. | (4,8) |
19.某种产品的广告费用支出x与销售额y之间有如下的对应数据(单位:万元):
(1)求y关于x的线性回归直线方程;
(2)据此估计广告费用为10万元时销售收入y的值.
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)据此估计广告费用为10万元时销售收入y的值.
(附:对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
17.已知随机变量ξ的取值为不大于n的非负整数值,它的分布列为:
其中pi(i=0,1,2,…,n)满足:pi∈[0,1],且p0+p1+p2+…+pn=1.
定义由ξ生成的函数f(x)=p0+p1x+p2x2+…+pnxn,令g(x)=f′(x).
(I)若由ξ生成的函数f(x)=$\frac{1}{4}$x+$\frac{1}{2}$x2+$\frac{1}{4}$x3,求P(ξ=2)的值;
(II)求证:随机变量ξ的数学期望E(ξ)=g(1),ξ的方差D(ξ)=g′(1)+g(1)-(g(1))2;(D(ξ)=$\sum_{i=0}^{n}$(i-E(ξ))2•pi)
(Ⅲ)现投掷一枚骰子两次,随机变量ξ表示两次掷出的点数之和,此时由ξ生成的函数记为h(x),求h(2)的值.
| ξ | 0 | 1 | 2 | … | n |
| P | p0 | p1 | p2 | … | pn |
定义由ξ生成的函数f(x)=p0+p1x+p2x2+…+pnxn,令g(x)=f′(x).
(I)若由ξ生成的函数f(x)=$\frac{1}{4}$x+$\frac{1}{2}$x2+$\frac{1}{4}$x3,求P(ξ=2)的值;
(II)求证:随机变量ξ的数学期望E(ξ)=g(1),ξ的方差D(ξ)=g′(1)+g(1)-(g(1))2;(D(ξ)=$\sum_{i=0}^{n}$(i-E(ξ))2•pi)
(Ⅲ)现投掷一枚骰子两次,随机变量ξ表示两次掷出的点数之和,此时由ξ生成的函数记为h(x),求h(2)的值.