题目内容
9.设f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,则a+b的值是$\frac{1}{3}$;f(a)=$\frac{1}{27}$.分析 依照偶函数的定义,对定义域内的任意实数,f(-x)=f(x),且定义域关于原点对称,a-1=-2a,求出a,b,即可得出结论.
解答 解:∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,
∴f(-x)=f(x),∴b=0,
又 a-1=-2a,
∴a=$\frac{1}{3}$,
∴a+b=$\frac{1}{3}$,
f(a)=f($\frac{1}{3}$)=$\frac{1}{3}×(\frac{1}{3})^{2}$=$\frac{1}{27}$.
故答案为:$\frac{1}{3}$,$\frac{1}{27}$.
点评 本题考查偶函数的定义,对定义域内的任意实数,f(-x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间2个端点互为相反数.
练习册系列答案
相关题目
19.函数$f(x)=a{log_2}x+a•{4^x}+3$在区间$(\frac{1}{2},1)$上有零点,则实数a的取值范围是( )
| A. | a<-3 | B. | $-\frac{3}{2}<a<-\frac{3}{4}$ | C. | $-3<a<-\frac{3}{4}$ | D. | $-\frac{3}{2}<a<-\frac{1}{2}$ |