题目内容

16.函数f(x)=a2lnx+x2-3ax在x=1处取到极小值,则实数a的值为(  )
A.1B.2C.1或$\frac{1}{2}$D.1或2

分析 求出函数的导数,计算f′(1)=0,求出a的值检验即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{{a}^{2}}{x}$+2x-3a,f′(1)=a2-3a+2=0,
解得:a=1或2,
a=1时,f′(x)=$\frac{{2x}^{2}-3x+1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
令f′(x)>0,解得:x>1或x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<1,
∴f(x)在(0,$\frac{1}{2}$)递增,在($\frac{1}{2}$,1)递减,在(1,+∞)递增,
故x=1是函数的极小值点,符合题意;
a=2时,f′(x)=$\frac{2(x-1)(x-2)}{x}$,
令f′(x)>0,解得:x>2或x<1,
令f′(x)<0,解得:1<x<2,
∴f(x)在(0,1)递增,在(1,2)递减,在(2,+∞)递增,
故x=1是函数的极大值点,不符合题意;
故a=1,
故选:A.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网