ÌâÄ¿ÄÚÈÝ

12£®ÒÑÖª¡ÑO£ºx2+y2=8£¬PÊÇ¡ÑOÉÏÔÚµÚÒ»ÏóÏÞµÄÒ»µã£¬¹ýµãP×÷¡ÑOµÄÇÐÏßÓëxÖᣬyÖáµÄÕý°ëÖáΧ³ÉÒ»¸öÈý½ÇÐΣ¬µ±Èý½ÇÐεÄÃæ»ý×îСʱ£¬ÇеãΪP1£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$ÇÒ¹ýµãP1£®
£¨1£©ÊÔÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýM£¨-1£¬0£©×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÇÒÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¡÷F1AF2£¬¡÷F1BF2µÄÃæ»ý·Ö±ðΪS1£¬S2£¬ÊÔÈ·¶¨|S1-S2|ȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÌâÒ⣬ÉèÇÐÏßÓëxÖᣬyÖáµÄ½»µãΪ£¨0£¬c£©£¬£¨d£¬0£©£¬´Ó¶ø¿ÉµÃcd=2$\sqrt{2}$$\sqrt{{c}^{2}+{d}^{2}}$¡Ý2$\sqrt{2}$$\sqrt{2cd}$£¬´Ó¶øÇóµÃÇеãP1£¨2£¬2£©£»´Ó¶øÐ´³öÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßMAµÄ·½³ÌΪx+1=ky£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£»´Ó¶ø¿ÉµÃ|S1-S2|=$\sqrt{6}$•|y1+y2|£¬´Ó¶øÁªÁ¢·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÇó½â£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬ÉèÇÐÏßÓëxÖᣬyÖáµÄ½»µãΪ£¨0£¬c£©£¬£¨d£¬0£©£¬
Ôòcd=2$\sqrt{2}$$\sqrt{{c}^{2}+{d}^{2}}$¡Ý2$\sqrt{2}$$\sqrt{2cd}$£¬
£¨µ±ÇÒ½öµ±c=d=4ʱ£¬µÈºÅ³ÉÁ¢£©£¬
¹Êcd¡Ý16£¬¶øS=$\frac{1}{2}$cd£¬
¹ÊÈý½ÇÐεÄÃæ»ý×îСʱ£¬ÇеãP1£¨2£¬2£©£»
¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡àa2=2b2£¬
¹Ê$\frac{4}{2{b}^{2}}$+$\frac{4}{{b}^{2}}$=1£¬
¹Êb2=6£¬a2=12£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1£»
£¨2£©ÉèÖ±ÏßMAµÄ·½³ÌΪx+1=ky£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£»
Ôò|S1-S2|=||$\frac{1}{2}$•|F1F2|•|y1|-$\frac{1}{2}$|F1F2|•|y2||
=$\frac{1}{2}$|F1F2|•||y1|-|y2||
=$\sqrt{6}$•|y1+y2|£¬
ÁªÁ¢·½³Ì¿ÉµÃ£¬
$\left\{\begin{array}{l}{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{6}=1}\\{x=ky-1}\end{array}\right.$£¬
»¯¼ò¿ÉµÃ£¬£¨2k2+2£©y2-2ky-11=0£¬
Ôò|y1+y2|=|$\frac{2k}{2{k}^{2}+2}$|=|$\frac{k}{{k}^{2}+1}$|¡Ü$\frac{1}{2}$£¬
¹Ê0¡Ü|y1+y2|¡Ü$\frac{1}{2}$£¬
¹Ê0¡Ü$\sqrt{6}$|y1+y2|¡Ü$\frac{\sqrt{6}}{2}$£®
¼´0¡Ü|S1-S2|¡Ü$\frac{\sqrt{6}}{2}$£®
¼´|S1-S2|µÄȡֵ·¶Î§Îª[0£¬$\frac{\sqrt{6}}{2}$]£®

µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏßÓëÖ±ÏßµÄλÖùØÏµµÄÓ¦Óã¬Í¬Ê±¿¼²éÁËÊýÐνáºÏµÄ˼ÏëÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø