题目内容
16.如图,△AOB为等腰直角三角形,OA=1,OC为斜边AB的高,点P在射线OC上,则$\overrightarrow{AP}•\overrightarrow{OP}$的最小值为( )| A. | -1 | B. | -$\frac{1}{8}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
分析 根据平面向量的线性运算与数量积运算,设|$\overrightarrow{OP}$|=t,利用t表示$\overrightarrow{AP}$•$\overrightarrow{OP}$,求二次函数的最小值即可.
解答 解:由$\overrightarrow{AP}$=$\overrightarrow{OP}$-$\overrightarrow{OA}$,
设|$\overrightarrow{OP}$|=t,t≥0,![]()
则$\overrightarrow{AP}$•$\overrightarrow{OP}$=${\overrightarrow{OP}}^{2}$-$\overrightarrow{OA}$•$\overrightarrow{OP}$
=t2-1×t×cos$\frac{π}{4}$
=t2-$\frac{\sqrt{2}}{2}$t
=${(t-\frac{\sqrt{2}}{4})}^{2}$-$\frac{1}{8}$;
所以,当t=$\frac{\sqrt{2}}{4}$时,$\overrightarrow{AP}$•$\overrightarrow{OP}$取得最小值为-$\frac{1}{8}$.
故选:B.
点评 本题考查了平面向量的三角形法则,向量数量积的运算性质以及二次函数的单调性问题,是综合性题目.
练习册系列答案
相关题目