题目内容
4.某几何体的三视图及相应尺寸(单位:cm)如图所示,则该几何体的体积为$\frac{8}{3}$(cm3).分析 由三视图可知,该几何体是四棱锥,底面是边长为2的正方形,高为2,即可求出几何体的体积.
解答 解:该几何体是四棱锥,底面是边长为2的正方形,高为2.
则其体积V=$\frac{1}{3}×{2}^{2}×2$=$\frac{8}{3}$(cm3)
故答案为$\frac{8}{3}$(cm3).
点评 本题考查了学生的空间想象力及运算能力,考查几何体体积的计算,比较基础..
练习册系列答案
相关题目
16.如图,△AOB为等腰直角三角形,OA=1,OC为斜边AB的高,点P在射线OC上,则$\overrightarrow{AP}•\overrightarrow{OP}$的最小值为( )

| A. | -1 | B. | -$\frac{1}{8}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
11.哈六中数学组推出微信订阅号(公众号hl15645101785)后,受到家长和学生们的关注,为了更好的为学生和家长提供帮助,我们在某时间段在线调查了60位更关注栏目1或栏目2(2选一)的群体身份样本得到如下列联表,已知在样本中关注栏目1与关注栏目2的人数比为2:1,在关注栏目1中的家长与学生人数比为5:3,在关注栏目2中的家长与学生人数比为1:3
(1)完成列联表,并根据列联表的数据,若按99%的可靠性要求,能否认为“更关注栏目1或栏目2与群体身份有关系”;
(2)如果把样本频率视为概率,随机回访两位关注者,更关注栏目1的人数记为随机变量X,求X的分布列和期望;
(3)由调查样本对两个栏目的关注度,请你为数学组教师提供建议应该更侧重充实哪个栏目的内容,并简要说明理由.
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)
| 栏目1 | 栏目2 | 合计 | |
| 家长 | |||
| 学生 | |||
| 合计 |
(2)如果把样本频率视为概率,随机回访两位关注者,更关注栏目1的人数记为随机变量X,求X的分布列和期望;
(3)由调查样本对两个栏目的关注度,请你为数学组教师提供建议应该更侧重充实哪个栏目的内容,并简要说明理由.
| P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |