ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚµãK£¬¹ýµãK×÷Ô²£¨x-5£©2+y2=9µÄÁ½ÌõÇÐÏߣ¬ÇеãΪM£¬N£¬|MN|=3$\sqrt{3}$£¨1£©ÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨2£©ÉèA£¬BÊÇÅ×ÎïÏßEÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$£¨ÆäÖÐOÎª×ø±êԵ㣩£®
¢ÙÇóÖ¤£ºÖ±ÏßAB±Ø¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãQµÄ×ø±ê£»
¢Ú¹ýµãQ×÷ABµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚG£¬DÁ½µã£¬ÇóËıßÐÎAGBDÃæ»ýµÄ×îСֵ£®
·ÖÎö £¨1£©ÇóµÃKµÄ×ø±ê£¬Ô²µÄÔ²ÐĺͰ뾶£¬ÔËÓöԳÆÐԿɵÃMRµÄ³¤£¬Óɹ´¹É¶¨ÀíºÍÈñ½ÇµÄÈý½Çº¯Êý£¬¿ÉµÃCK=6£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇóµÃp=2£¬½ø¶øµÃµ½Å×ÎïÏß·½³Ì£»
£¨2£©¢ÙÉè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨µãQ£»
¢ÚÔËÓÃÏÒ³¤¹«Ê½ºÍËıßÐεÄÃæ»ý¹«Ê½£¬»»ÔªÕûÀí£¬½áºÏ»ù±¾²»µÈʽ£¬¼´¿ÉÇóµÃ×îСֵ£®
½â´ð £¨1£©½â£ºÓÉÒÑÖª¿ÉµÃK£¨-$\frac{p}{2}$£¬0£©£¬Ô²C£º£¨x-5£©2+y2=9µÄÔ²ÐÄC£¨5£¬0£©£¬°ë¾¶r=3£®
ÉèMNÓëxÖá½»ÓÚR£¬ÓÉÔ²µÄ¶Ô³ÆÐԿɵÃ|MR|=$\frac{3\sqrt{3}}{2}$
ÓÚÊÇ|CR|=$\frac{3}{2}$£¬
¼´ÓÐ|CK|=$\frac{|MC|}{sin¡ÏMKC}=\frac{|MC|}{sin¡ÏCMR}$=6£¬
¼´ÓÐ5+$\frac{p}{2}$=6£¬½âµÃp=2£¬ÔòÅ×ÎïÏßEµÄ·½³ÌΪy2=4x£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+t£¬A£¨$\frac{{{y}_{1}}^{2}}{4}$£¬y1£©£¬B£¨$\frac{{{y}_{2}}^{2}}{4}$£¬y2£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì¿ÉµÃy2-4my-4t=0£¬
y1+y2=4m£¬y1y2=-4t£¬
$\overrightarrow{OA}•\overrightarrow{OB}=\frac{9}{4}$£¬¼´ÓÐ$\frac{{{y}_{1}}^{2}}{4}$•$\frac{{{y}_{2}}^{2}}{4}$+y1y2=$\frac{9}{4}$£¬
½âµÃy1y2=-18»ò2£¨ÉáÈ¥£©£¬
¼´-4t=-18£¬½âµÃt=$\frac{9}{2}$£®
ÔòÓÐABºã¹ý¶¨µãQ£¨$\frac{9}{2}$£¬0£©£»
¢Ú½â£ºÓɢٿɵÃ|AB|=$\sqrt{1+{m}^{2}}$|y2-y1|=$\sqrt{1+{m}^{2}}•\sqrt{16{m}^{2}+72}$£¬
ͬÀí|GD|=$\sqrt{1+\frac{1}{{m}^{2}}}•\sqrt{\frac{16}{{m}^{2}}+72}$£¬
ÔòËıßÐÎAGBDÃæ»ýS=$\frac{1}{2}$|AB|•|GD|=4$\sqrt{[£¨2+£¨{m}^{2}+\frac{1}{{m}^{2}}£©][85+18£¨{m}^{2}+\frac{1}{{m}^{2}}£©]}$£¬
Áîm2+$\frac{1}{{m}^{2}}$=¦Ì£¨¦Ì¡Ý2£©£¬ÔòS=4$\sqrt{18{¦Ì}^{2}+121¦Ì+170}$ÊǹØÓڦ̵ÄÔöº¯Êý£¬
Ôòµ±¦Ì=2ʱ£¬SÈ¡µÃ×îСֵ£¬ÇÒΪ88£®
µ±ÇÒ½öµ±m=¡À1ʱ£¬ËıßÐÎAGBDÃæ»ýµÄ×îСֵΪ88£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÅ×ÎïÏß·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¾ßÓÐÒ»¶¨µÄÔËËãÁ¿£¬ÊôÓÚÖеµÌ⣮
PB=PD£¬¶þÃæ½ÇP-BD-AΪ60¡ã£¬Ôò|PC|=£¨¡¡¡¡£©
| A£® | 3$\sqrt{2}$ | B£® | 3$\sqrt{3}$ | C£® | 3 | D£® | 2 |
| A£® | £¨e£¬+¡Þ£© | B£® | £¨-¡Þ£¬e£© | C£® | £¨-¡Þ£¬$\frac{1}{e}$£© | D£® | [0£¬e£© |