题目内容

19.已知Sn为等比数列{an}的前n项和,公比q=2,S99=154,则a3+a6+a9+…+a99=88.

分析 公比q=2,S99=154,可得$\frac{{a}_{1}(1-{2}^{99})}{1-2}$=154,可得${a}_{1}({2}^{99}-1)$=154.又a3+a6+a9+…+a99=$\frac{{a}_{3}[({2}^{3})^{33}-1]}{{2}^{3}-1}$=$\frac{4{a}_{1}({2}^{99}-1)}{7}$,代入即可得出.

解答 解:∵公比q=2,S99=154,∴$\frac{{a}_{1}(1-{2}^{99})}{1-2}$=154,可得${a}_{1}({2}^{99}-1)$=154.
则a3+a6+a9+…+a99=$\frac{{a}_{3}[({2}^{3})^{33}-1]}{{2}^{3}-1}$=$\frac{4{a}_{1}({2}^{99}-1)}{7}$=$\frac{4}{7}×154$=88,
故答案为:88.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网