题目内容

9.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)N是棱AB上一点,且三棱锥A-MNC的体积等于四棱锥P-ABCD体积的$\frac{1}{12}$,求$\frac{AN}{NB}$的值.

分析 (1)由PA⊥平面ABCD得PA⊥CD,由勾股定理的逆定理得AC⊥BC,故CD⊥平面PAC.
(2)设AN=x,求出三棱锥A-MNC和四棱锥P-ABCD的体积,利用体积比得出x,从而求出$\frac{AN}{NB}$的值.

解答 (1)证明:∵AB=AC=2,BC=2$\sqrt{2}$,
∴AB2+AC2=BC2,∴AB⊥AC.
∵底面ABCD是平行四边形,
∴AB∥CD,∴AC⊥CD.
∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,又PA∩AC=A,PA?平面PAC,AC?平面PAC,
∴CD⊥平面PAC.
(2)解:设AN=x,则S△ANC=$\frac{1}{2}AN•AC=x$,
∵M是PD的中点,∴M到平面ABCD的距离h=$\frac{1}{2}PA$=1.
∴V=A-MNC=VM-ANC=$\frac{1}{3}{S}_{△ANC}•h$=$\frac{x}{3}$.
∵VP-ABCD=$\frac{1}{3}{S}_{四边形ABCD}•PA$=$\frac{1}{3}×2×2×2$=$\frac{8}{3}$.
∵三棱锥A-MNC的体积等于四棱锥P-ABCD体积的$\frac{1}{12}$,
∴$\frac{x}{3}=\frac{8}{3}×\frac{1}{12}$,∴x=$\frac{2}{3}$.即AN=$\frac{2}{3}$.
∴BN=AB-AN=$\frac{4}{3}$.
∴$\frac{AN}{NB}=\frac{1}{2}$.

点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网