ÌâÄ¿ÄÚÈÝ
1£®ÒÑ֪ijÖÐѧ¸ßÈýÎĿưàѧÉúµÄÊýѧÓëµØÀíµÄˮƽ²âÊԳɼ¨³éÑùͳ¼ÆÈç±í£º| x ÈËÊý y | A | B | C |
| A | 14 | 40 | 10 |
| B | a | 36 | b |
| C | 28 | 8 | 34 |
£¨1£©ÉèÔÚ¸ÃÑù±¾ÖУ¬Êýѧ³É¼¨µÄÓÅÐãÂÊÊÇ30%£¬Çóa£¬bµÄÖµ£»
£¨2£©ÒÑÖªa¡Ý8£¬b¡Ý6£¬ÇóÊýѧ³É¼¨ÎªAµÈ¼¶µÄÈËÊý±ÈCµÈ¼¶µÄÈËÊý¶àµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©ÓÉÆµÂÊ=$\frac{ƵÊý}{×ÜÊý}$£¬ÄÜÇó³öa£¬bµÄÖµ£®
£¨2£©ÓÉ14+a+28£¾10+b+34£¬µÃa£¾b+2£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜÇó³öËùÇó¸ÅÂÊ£®
½â´ð ½â£º£¨1£©ÓÉÆµÂÊ=$\frac{ƵÊý}{×ÜÊý}$£¬µÃµ½$\frac{14}{n}=0.07$£¬
½âµÃn=200£¬
¡à$\frac{14+a+28}{200}=0.3$£¬½âµÃa=18£¬
¡ß14+a+28+40+36+8+10+b+34=200£¬
¡àb=12£®
£¨2£©¡ßa+b=30£¬ÇÒa¡Ý8£¬b¡Ý6£¬
¡àÓÉ14+a+28£¾10+b+34£¬µÃa£¾b+2£¬
£¨a£¬b£©µÄËùÓнá¹ûΪ£¨8£¬22£©£¬£¨9£¬21£©£¬£¨10£¬20£©£¬£¨11£¬19£©£¬£¨12£¬18£©£¬£¨13£¬17£©£¬
£¨14£¬16£©£¬£¨15£¬15£©£¬£¨16£¬14£©£¬£¨17£¬12£©£¬£¨18£¬12£©£¬£¨19£¬20£©£¬£¨20£¬10£©£¬£¨21£¬9£©£¬£¨22£¬8£©£¬£¨23£¬7£©£¬£¨24£¬6£©£¬
¹²17×飬
ÆäÖÐa£¾b+2µÄÓÐ8×飬
¡àÊýѧ³É¼¨ÎªAµÈ¼¶µÄÈËÊý±ÈCµÈ¼¶µÄÈËÊý¶àµÄ¸ÅÂÊP=$\frac{8}{17}$£®
µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼±íµÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®
| A£® | $\sqrt{3}$ | B£® | $\sqrt{5}$+1 | C£® | $\sqrt{2}$ | D£® | 2+$\sqrt{3}$ |
| A£® | £¨x-1£©2+£¨y+2£©2=4 | B£® | £¨x-2£©2+£¨y+2£©2=2 | C£® | £¨x-2£©2+£¨y+2£©2=4 | D£® | £¨x-2$\sqrt{2}$£©2+£¨y+2$\sqrt{2}$£©2=4 |
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |
£¨1£©Íê³É2¡Á2ÁÐÁª±í£¬²¢ÅжÏÊÇ·ñ¿ÉÒÔÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý1%µÄǰÌáÏ£¬ÈÏΪ¿¹µ¹·üÓëÓñÃ×°«¾¥Óйأ¿
£¨2£©£¨i£©°´ÕÕ·Ö²ã³éÑùµÄ·½Ê½£¬ÔÚÉÏÊöÑù±¾ÖУ¬´ÓÒ×µ¹·üºÍ¿¹µ¹·üÁ½×éÖгé³ö9ÖêÓñÃ×£¬ÉèÈ¡³öµÄÒ×µ¹·ü°«¾¥ÓñÃ×ÖêÊýΪX£¬ÇóXµÄ·Ö²¼ÁУ¨¸ÅÂÊÓÃ×éºÏÊýËãʽ±íʾ£©
£¨ii£©Èô½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬´Ó¿¹µ¹·üµÄÓñÃ×ÊÔÑéÌïÖÐÔÙËæ»úÈ¡³ö50Ö꣬ÇóÈ¡³öµÄ¸ß¾¥ÓñÃ×ÖêÊýµÄÊýѧÆÚÍûºÍ·½²î
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |