题目内容

9.设△ABC的内角A,B,C的对边分别为a,b,c,且满足sinA+sinB=(cosA+cosB)sinC.
(Ⅰ)求证:△ABC为直角三角形;
(Ⅱ)若a+b+c=1+$\sqrt{2}$,求△ABC面积的最大值.

分析 (Ⅰ)由sinA+sinB=(cosA+cosB)sinC,利用正、余弦定理,得a+b=$({\frac{{{b^2}+{c^2}-{a^2}}}{2bc}+\frac{{{c^2}+{a^2}-{b^2}}}{2ca}})$c,化简整理,即可证明:△ABC为直角三角形;
(Ⅱ)利用a+b+c=1+$\sqrt{2}$,a2+b2=c2,根据基本不等式可得1+$\sqrt{2}$=a+b+$\sqrt{{a^2}+{b^2}}$≥2$\sqrt{ab}$+$\sqrt{2ab}$=(2+$\sqrt{2}$)•$\sqrt{ab}$,即可求出△ABC面积的最大值.

解答 (Ⅰ)证明:在△ABC中,因为sinA+sinB=(cosA+cosB)sinC,
所以由正、余弦定理,得a+b=$({\frac{{{b^2}+{c^2}-{a^2}}}{2bc}+\frac{{{c^2}+{a^2}-{b^2}}}{2ca}})$c  …(2分)
化简整理得(a+b)(a2+b2)=(a+b)c2
因为a+b>0,所以a2+b2=c2  …(4分)
故△ABC为直角三角形,且∠C=90°  …(6分)
(Ⅱ)解:因为a+b+c=1+$\sqrt{2}$,a2+b2=c2
所以1+$\sqrt{2}$=a+b+$\sqrt{{a^2}+{b^2}}$≥2$\sqrt{ab}$+$\sqrt{2ab}$=(2+$\sqrt{2}$)•$\sqrt{ab}$
当且仅当a=b时,上式等号成立,所以$\sqrt{ab}$≤$\frac{{\sqrt{2}}}{2}$.…(8分)
故S△ABC=$\frac{1}{2}$ab≤$\frac{1}{2}$×${({\frac{{\sqrt{2}}}{2}})^2}$≤$\frac{1}{4}$…(10分)
即△ABC面积的最大值为$\frac{1}{4}$…(12分)

点评 本题考查的是解三角形,考查正、余弦定理,基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网