题目内容
19.设a1,a2,…a9成等差数列,若$\sum_{k=1}^{9}{a}_{k}=0,\sum_{k=1}^{9}{a}_{k}^{2}=15$,且a1<a2,则a9=( )| A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{3}{4}$ |
分析 设此等差数列的公差为d,由于$\sum_{k=1}^{9}{a}_{k}=0,\sum_{k=1}^{9}{a}_{k}^{2}=15$,且a1<a2,可得d>0,9a5=0,$({a}_{5}-4d)^{2}$+$({a}_{5}-3d)^{2}$+…+${a}_{5}^{2}$+$({a}_{5}+d)^{2}$+…+$({a}_{5}+4d)^{2}$=15,即$9{a}_{5}^{2}$+60d2=15,化简解出即可得出.
解答 解:设此等差数列的公差为d,∵$\sum_{k=1}^{9}{a}_{k}=0,\sum_{k=1}^{9}{a}_{k}^{2}=15$,且a1<a2,
∴d>0,9a5=0,$({a}_{5}-4d)^{2}$+$({a}_{5}-3d)^{2}$+…+${a}_{5}^{2}$+$({a}_{5}+d)^{2}$+…+$({a}_{5}+4d)^{2}$=15,即$9{a}_{5}^{2}$+60d2=15,
解得a5=0,d=$\frac{1}{2}$.
则a9=${a}_{5}+\frac{1}{2}(9-5)$=2.
故选:A.
点评 本题考查了等差数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.若函数f(x)同时满足以下三个性质;①f(x)的最小正周期为π;②对任意的x∈R,都有f(x-$\frac{π}{4}$)=f(-x);③f(x)在($\frac{3π}{8}$,$\frac{π}{2}$)上是减函数.则f(x)的解析式可能是( )
| A. | f(x)=cos(x+$\frac{π}{8}$) | B. | f(x)=sin2x-cos2x | C. | f(x)=sinxcosx | D. | f(x)=sin2x+cos2x |
7.在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinA,且B>$\frac{π}{2}$,则sinA+sinC的最大值是( )
| A. | $\sqrt{2}$ | B. | $\frac{9}{8}$ | C. | 1 | D. | $\frac{7}{8}$ |
14.圆(x+2)2+(y-3)2=7的圆心与半径分别是( )
| A. | (2,-3),7 | B. | (-2,3),7 | C. | (2,-3),$\sqrt{7}$ | D. | (-2,3),$\sqrt{7}$ |
4.
如图所示,在三角形ABC中,AD⊥BC,AD=1,BC=4,点E为AC的中点,$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,则AB的长度为( )
| A. | 2 | B. | $\frac{3}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |