题目内容
11.已知各项均为正数的等比数列{an}的前n项和为Sn,若a5=2a3+a4,且S5=62.(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
分析 (1)设公比为q(q>0),由a5=2a3+a4,且S5=62,得到关于a1,q方程组,解得即可,
(2)根据数列求和公式,以及裂项求和,和放缩法即可证明
解答 解:(1)设公比为q(q>0),由a5=2a3+a4,且S5=62,
得,$\left\{\begin{array}{l}{{a}_{1}{q}^{4}=2{a}_{1}{q}^{2}+{a}_{1}{q}^{3}}\\{\frac{{a}_{1}(1-{q}^{5})}{1-q}=62}\end{array}\right.$
解得a1=2,q=2,
∴an=2n,
(2)由(1)可知an=2n+1,Sn=$\frac{2(1-{2}^{n})}{1-2}$=2(2n-1),Sn+1=2(2n+1-1),
∴bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$=$\frac{{2}^{n+1}}{2×({2}^{n}-1)×2×({2}^{n+1}-1)}$=$\frac{1}{2}$($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$),
∴Tn=$\frac{1}{2}$[($\frac{1}{{2}^{1}-1}$-$\frac{1}{{2}^{2}-1}$)+($\frac{1}{{2}^{2}-1}$-$\frac{1}{{2}^{3}-1}$)+…+($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$)]=$\frac{1}{2}$(1-$\frac{1}{{2}^{n+1}-1}$),
∵n+1≥2,
∴$\frac{1}{{2}^{n+1}-1}$≤$\frac{1}{3}$,
∴$\frac{1}{2}$(1-$\frac{1}{{2}^{n+1}}$)≥$\frac{1}{3}$,且$\frac{1}{2}$(1-$\frac{1}{{2}^{n+1}-1}$)<$\frac{1}{2}$,
∴$\frac{1}{3}$≤Tn<$\frac{1}{2}$.
点评 本题考查了等比数列的通项公式和求和公式,以及裂项求和和放缩法,属于中档题
| A. | $({-∞,-\frac{3}{2}})$ | B. | $({-∞,-\frac{3}{4}})$ | C. | $({-\frac{3}{4},+∞})$ | D. | $({-\frac{3}{2},+∞})$ |
| A. | n2 | B. | n(n+1) | C. | $\frac{n(n+1)}{2}$ | D. | (n+1)(n+2) |
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{13}$ | D. | $\frac{2}{9}$ |