题目内容

在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F为棱CE上异于点C、E的动点,则下列说法正确的有(  )
①直线DE与平面ABF平行;
②当F为CE的中点时,BF⊥平面CDE;
③存在点F使得直线BF与AC平行;
④存在点F使得DF⊥BC.
A、1个B、2个C、3个D、4个
考点:命题的真假判断与应用
专题:空间位置关系与距离,简易逻辑
分析:①由AB⊥平面ACD,DE⊥平面ACD,可得DE∥AB,利用线面平行的判定定理即可得到:直线DE与平面ABF平行,即可判断出正误;
②当F为CE的中点时,取CD的中点M,连接AM,MF,可得四边形ABFM是平行四边形,BF∥AM.而AM⊥CD,DE⊥AM,可得AM⊥平面CDE.即可得出BF⊥平面CDE,即可判断出正误;
③点C是平面ABF外的一点,因此BF与AC为异面直线,不可能平行,即可判断出正误;
④由③可得:当F为CE的中点时,BF⊥DF,DF⊥CE,利用线面垂直的判定定理可得:DF⊥平面BCE,即可判断出正误.
解答: 解:①∵AB⊥平面ACD,DE⊥平面ACD,∴DE∥AB,而DE?平面ABF,AB?平面ABF,∴直线DE与平面ABF平行,正确;
②当F为CE的中点时,取CD的中点M,连接AM,MF,则MF
.
1
2
DE
,又AB
.
1
2
DE
,∴AB
.
MF,∴四边形ABFM是平行四边形,BF∥AM.
而AM⊥CD,DE⊥AM,CD∩DE=D,∴AM⊥平面CDE.∴BF⊥平面CDE,因此正确;
③点C是平面ABF外的一点,因此BF与AC为异面直线,不可能平行,不正确;
④由③可得:当F为CE的中点时,BF⊥DF,DF⊥CE,BF∩CE=F,∴DF⊥平面BCE,∴存在点F使得DF⊥BC,正确.
综上可得:①②④正确.
故选:C.
点评:本题考查了空间线面位置关系的判定与性质定理,考查了空间想象能力,考查了推理能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网