题目内容

7.已知点A($\frac{π}{6}$,$\frac{\sqrt{3}}{2}$),B($\frac{π}{4}$,1),C($\frac{π}{2}$,0),若这三个点都在函数f(x)=sinωx的图象上,则正数ω的 所有取值的集合为{ω|ω=8k+2,k∈N}∩{ω|ω=12k+2,或12k+4,k∈N}∪{2,4}..

分析 由条件利用正弦函数的图象特征,分类讨论,求得每种情况下正数ω的值,从而得出结论.

解答 解:若三个点都在函数f(x)=sinωx的图象上,
则有sin(ω•$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,sin(ω•$\frac{π}{4}$)=1,sinω•$\frac{π}{2}$=0,
则 $\left\{\begin{array}{l}{\left.\begin{array}{l}{ω•\frac{π}{6}=2kπ+\frac{π}{3},或ω•\frac{π}{6}=2kπ+\frac{2π}{3},k∈Z}\\{ω•\frac{π}{4}=2kπ+\frac{π}{2},k∈Z}\end{array}\right.}\\{ω•\frac{π}{2}=kπ,k∈Z}\end{array}\right.$,
即 $\left\{\begin{array}{l}{\left.\begin{array}{l}{ω=12k+2,或ω=12k+4,k∈Z}\\{ω=8k+2,k∈Z}\end{array}\right.}\\{ω=2k,k∈Z}\end{array}\right.$,
求得正数ω的 所有取值的集合为:{ω|ω=8k+2,k∈N}∩{ω|ω=12k+2,或12k+4,k∈N}∪{2,4}.
故答案为:{ω|ω=8k+2,k∈N}∩{ω|ω=12k+2,或12k+4,k∈N}∪{2,4}.

点评 本题主要考查正弦函数的图象特征,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网