ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉϵÄÒ»¶¯µãPµ½×ó¡¢ÓÒ½¹µãF1£¬F2µÄ¾àÀëÖ®ºÍΪ2$\sqrt{2}$£¬µãPµ½ÍÖÔ²Ò»¸ö½¹µãµÄ×îÔ¶¾àÀëΪ$\sqrt{2}$+1£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©¹ýÓÒ½¹µãF2µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã
¢ÙÈôyÖáÉÏÊÇ·ñ´æÔÚÒ»µãM£¨0£¬$\frac{1}{3}$£©Âú×ã|MA|=|MB|£¬ÇóÖ±ÏßlбÂÊkµÄÖµ£»
¢ÚÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïßl£¬Ê¹S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£¨ÆäÖÐOÎª×ø±êԵ㣩£¿Èô´æÔÚ£¬ÇóÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨I£©ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹µãÔÚxÖáÉÏ£¬¸ù¾ÝÍÖÔ²µÄÐÔÖÊ¿ÉÖª£¬2a=2$\sqrt{2}$£¬a=$\sqrt{2}$£¬b2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨II£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬Ôòx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬ÓÉÏÒ³¤¹«Ê½¿ÉÖª$\sqrt{1+{k}^{2}}$Øx1-x2Ø=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{2}£¨1+{k}^{2}£©}{1+2{k}^{2}}$£¬
¢ÙÉèÖ±Ïß·½³Ì£¬ÁªÁ¢£¬µÃµ½Öеã×ø±ê£¬¸ù¾Ý|MA|=|MB|£¬µÃµ½MGËùÔÚµÄÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬¸ù¾ÝÁ½Ö±ÏßбÂÊÖ®»ýΪ-1£¬¼´¿ÉÇóµÃÖ±ÏßlбÂÊkµÄÖµ£»
¢Ú·Ö³ÉбÂÊ´æÔںͲ»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ£¬·Ö±ðÇóµÃÏÒ³¤ØABØ£¬Ôµãµ½Ö±ÏߵľàÀ룬½ø¶øÇóµÃÃæ»ýµÄ±í´ïʽ£¬¸ù¾Ý²»µÈʽ¼´¿ÉµÃµ½½á¹û£®
½â´ð ½â£º£¨I£©ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹µãÔÚxÖáÉÏ£¬ÓÉPµ½×ó¡¢ÓÒ½¹µãF1£¬F2µÄ¾àÀëÖ®ºÍΪ2$\sqrt{2}$£¬
¸ù¾ÝÍÖÔ²µÄÐÔÖÊ¿ÉÖª£¬2a=2$\sqrt{2}$£¬a=$\sqrt{2}$£¬¡1·Ö
µãPµ½ÍÖÔ²Ò»¸ö½¹µãµÄ×îÔ¶¾àÀëΪa+c=$\sqrt{2}$+1
¡àc=1£¬
b2=a2-c2=1£¬¡2·Ö
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»¡3·Ö
£¨II£©ÓÉ£¨¢ñ£©¿ÉÖª£ºF2£¨1£¬0£©£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=k£¨x-1£©£¬A £¨x1£¬y1£©£¬B £¨x2£¬y2£©£¬
ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³ÌµÃ£º$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬
¡àx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
¡ày1+y2=k£¨x1+x2£©-2k=-$\frac{2k}{1+2{k}^{2}}$£¬
Øx1-x2Ø=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{2}\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$£¬¡4·Ö
¢ÙÓÉABµÄÖеã×ø±êΪG£¨$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬-$\frac{k}{1+2{k}^{2}}$£©£¬¡5·Ö
µ±k¡Ù1ʱ£¬ÓÉ|MA|=|MB|£¬µÃµ½MGËùÔÚµÄÖ±ÏßÓëÖ±Ïßl´¹Ö±£¬
ÓÉMGËùÔÚµÄÖ±ÏßбÂÊΪ$\frac{-\frac{k}{1+2{k}^{2}}-\frac{1}{3}}{\frac{2{k}^{2}}{1+2{k}^{2}}-0}$=$\frac{-2k-1-2{k}^{2}}{6{k}^{2}}$=-$\frac{1}{k}$£¬½âµÃ£ºk=1»òk=$\frac{1}{2}$£»¡7·Ö
µ±k=0ʱ£¬ABµÄÖд¹ÏßËùÔÚµÄÖ±Ïߵķ½³ÌΪx=0£¬Âú×ãÌâÒ⣬
×ÛÉÏËùÊö£¬Ð±ÂÊkµÄȡֵΪ0£¬$\frac{1}{2}$£¬1£»¡8·Ö
£¨2£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬´ËʱA£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬B£¨1£¬-$\frac{\sqrt{2}}{2}$£©£¬µÃµ½ØABØ=$\sqrt{2}$£¬
¡àS¡÷ABO=$\frac{1}{2}$¡Á1¡Á$\sqrt{2}$=$\frac{\sqrt{2}}{2}$£¬¡9·Ö
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ØABØ=$\sqrt{1+{k}^{2}}$•Øx1-x2Ø=$\frac{2\sqrt{2}£¨1+{k}^{2}£©}{1+2{k}^{2}}$£¬¡10·Ö
Ե㵽ֱÏßlµÄ¾àÀëΪd=$\frac{ØkØ}{\sqrt{1+{k}^{2}}}$£¬¡11·Ö
¡àS¡÷ABO=$\frac{1}{2}$•ØABØ•d=$\sqrt{2}$ØABØ•d=$\sqrt{2}$$\sqrt{\frac{1}{4}-\frac{1}{4£¨1+2{k}^{2}£©^{2}}}$£¬¡12·Ö
ÓÉ$\frac{1}{4£¨1+2{k}^{2}£©^{2}}$£¾0£¬
ËùÒÔS¡÷ABO£¼$\frac{\sqrt{2}}{2}$£¬
×ÛÉÏËùÊö£¬S¡÷ABOµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$
ËùÒÔÂú×ãÌâÒâµÄÖ±Ïß´æÔÚ£¬·½³ÌΪx=1¡14·Ö
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏÒ³¤¹«Ê½£¬Î¤´ï¶¨Àí£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÈý½ÇÐÎÃæ»ý¹«Ê½µÄ×ÛºÏÓ¦Ó㬿¼²éÍÖÔ²Óë²»µÈʽµÄ×ÛºÏÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | m¡Ü0 | B£® | m¡Ü-1 | C£® | m¡Ý2 | D£® | m¡Ü-$\frac{3}{2}$ |
| A£® | Ö±½ÇÈý½ÇÐÎ | B£® | µÈ±ßÈý½ÇÐÎ | C£® | µÈÑüÈý½ÇÐÎ | D£® | µÈÑüÖ±½ÇÈý½ÇÐÎ |
£¨1£©¸ù¾ÝÒÔÉÏ×ÊÁÏ»³öÊýѧ³É¼¨ÓëÎïÀí³É¼¨µÄÁÐÁª±í£»
£¨2£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.050µÄǰÌáÏÂÈÏΪÊýѧ³É¼¨ÓëÎïÀí³É¼¨ÓйØÏµ£¿
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£»n=a+b+c+d
| P£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
| A£® | $\frac{24¦Ð}{3}$ | B£® | $\frac{4¦Ð}{3}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{¦Ð}{3}$ |