题目内容

14.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M为A1D中点,N为AC中点.
(1)求异面直线MN和AB所成的角;
(2)求证:MN⊥AB1

分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线MN和AB所成的角的大小.
(2)分别求出$\overrightarrow{MN}$,$\overrightarrow{A{B}_{1}}$,利用向量法能证明MN⊥AB1

解答 解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
由题意得M($\frac{a}{2}$,0,$\frac{a}{2}$),N($\frac{a}{2},\frac{a}{2}$,0),A(a,0,0),B(a,a,0),
$\overrightarrow{MN}$=(0,$\frac{a}{2}$,-$\frac{a}{2}$),$\overrightarrow{AB}$=(0,a,0),
设MN和AB所成的角为θ,
则cosθ=|$\frac{\overrightarrow{MN}•\overrightarrow{AB}}{|\overrightarrow{MN}|•|\overrightarrow{AB}|}$|=|$\frac{\frac{{a}^{2}}{2}}{\frac{\sqrt{2}}{2}{a}^{2}}$|=$\frac{\sqrt{2}}{2}$,
∴θ=45°,
∴异面直线MN和AB所成的角为45°.
证明:(2)$\overrightarrow{MN}$=(0,$\frac{a}{2}$,-$\frac{a}{2}$),B1(a,a,a),$\overrightarrow{A{B}_{1}}$=(0,a,a),
∴$\overrightarrow{MN}•\overrightarrow{A{B}_{1}}$=0+$\frac{{a}^{2}}{2}-\frac{{a}^{2}}{2}$=0,
∴MN⊥AB1

点评 本题考查异面直线所成角的求法,考查异面垂直的证明,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网