题目内容
14.已知(1+ax)(1+x)5的展开式中x3的系数为5,则a=-$\frac{1}{2}$.分析 根据(1+x)5展开式的各项特征,得出(1+ax)(1+x)5的展开式中x3的系数是a•${C}_{5}^{2}$+${C}_{5}^{3}$,由此列出方程求a的值.
解答 解:(1+x)5=1+${C}_{5}^{1}$x+${C}_{5}^{2}$x2+${C}_{5}^{3}$x3+…,
∴(1+ax)(1+x)5的展开式中x3的系数为
a•${C}_{5}^{2}$+${C}_{5}^{3}$=5,
即10a+10=5,
解得a=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.
点评 本题考查了利用二项式展开式的通项公式求特定项的系数问题,是基础题目.
练习册系列答案
相关题目
4.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两个焦点,若在双曲线C上存在点P使∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线C的离心率为( )
| A. | $\sqrt{3}$+1 | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
5.
某中学为了解某次竞赛成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图解决下列问题:
频率分布表:
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学参加座谈,求所抽取的2名同学来自同一组的概率.
频率分布表:
| 组别 | 分组 | 频数 | 频率 |
| 第1组 | [50,60) | 9 | 0.18 |
| 第2组 | [60,70) | a | ▓ |
| 第3组 | [70,80) | 20 | 0.40 |
| 第4组 | [80,90) | ▓ | 0.08 |
| 第5组 | [90,100] | 2 | b |
| 合计 | ▓ | ▓ |
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学参加座谈,求所抽取的2名同学来自同一组的概率.
9.
若正整数N除以正整数m后的余数为n,则记为N≡n(mod m),例如10≡4(mod 6).下面程序框图的算法源于我国古代闻名中外的(中国剩余定理),执行该程序框图,则输出的n等于( )
| A. | 17 | B. | 16 | C. | 15 | D. | 13 |
19.两组学校的社会实践活动各有7位人员(下文分别简称为“甲小组”和“乙小组”).两小组成员分别独立完成一项社会调查,并形成调查报告,每位成员从启动调查到完成报告所用的时间(单位:天)如表所示:
假设所有成员所用时间相互了独立,从甲、乙两小组随机各选1人,甲小组选出的人记为A,乙小组选出的人记为B.
(Ⅰ)求A所用时间不小于13天的概率;
(Ⅱ)如果a=18,求A所用的时间比B所用时间长的概率.
| 组别 | 每位成员从启动调查到完成报告所用的时间(单位:天) | ||||||
| 甲小组 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 乙小组 | 12 | 13 | 15 | 16 | 17 | 14 | a |
(Ⅰ)求A所用时间不小于13天的概率;
(Ⅱ)如果a=18,求A所用的时间比B所用时间长的概率.
6.已知全集U=R,集合A={x|x≤-2或x≥3},B={x|x<-1或x>4},那么集合(∁UA)∩B等于( )
| A. | {x|-2≤x<4} | B. | {x|-2<x<3} | C. | {x|-2<x<-1} | D. | {x|-2<x<-1或3<x<4} |
4.已知函数f(x)=Acos(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,当x=$\frac{5π}{12}$时,函数f(x)取得最小值,则下列结论正确的是( )
| A. | f(1)<f(-1)<f(0) | B. | f(0)<f(1)<f(-1) | C. | f(-1)<f(0)<f(1) | D. | f(1)<f(0)<f(-1) |