题目内容
若a>0,b>0,则p=
+
与q=a+b的大小关系为( )
| b2 |
| a |
| a2 |
| b |
| A、p>q | B、p≥q |
| C、p<q | D、p≤q |
考点:不等式比较大小
专题:不等式的解法及应用
分析:根据基本不等式质化简p,问题得以解决.
解答:
解:∵a>0,b>0,
∴p=
+
=
≥
•(2ab-ab)=a+b=q.当且仅当a=b时等号成立.
故选:B.
∴p=
| b2 |
| a |
| a2 |
| b |
| (a+b)(a2-ab+b2) |
| ab |
| a+b |
| ab |
故选:B.
点评:本题主要考查了基本不等式,等号成立的条件是关键,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=3x3-ax2+x-5在区间[1,2]上单调递减,则a的取值范围是( )
A、[5,
| ||
B、(-∞,5)∪(
| ||
| C、[5,+∞) | ||
D、[
|
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,设曲线C1,C2相交于两点A,B,则过AB中点且与直线AB垂直的直线的直角标方程为( )
|
A、y=-
| ||||||||
B、y=
| ||||||||
C、y=-
| ||||||||
D、y=
|
若函数f(x)=x3-
x2+1,则( )
| 3 |
| 2 |
A、最大值为1,最小值为
| ||
| B、最大值为1,无最小值 | ||
C、最小值为
| ||
| D、既无最大值也无最小值 |
已知数列{2n-11},则Sn的最小值为( )
| A、S1 |
| B、S5 |
| C、S6 |
| D、S11 |
设随机变量ξ~N(0,1),记Φ(x)=P(ξ<x),则P(-1<ξ<1)等于( )
A、
| ||
| B、2Φ(-1)-1 | ||
| C、2Φ(1)-1 | ||
| D、Φ(1)+Φ(-1) |