题目内容

在△ABC中,内角A、B、C所对的边分别为a、b、c,a=2,且(2+b)(sinA-sinB)=c(sinC-sinB),则△ABC面积的最大值为
 
考点:正弦定理,余弦定理
专题:解三角形
分析:由条件利用正弦定理可得b2+c2-bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积
1
2
bcsinA的值.
解答: 解:△ABC中,∵a=2,且(2+b)(sinA-sinB)=c(sinC-sinB),
∴利用正弦定理可得(2+b)(a-b)=(c-b)c,即 b2+c2-bc=4.
再利用基本不等式可得 4≥2bc-bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,
此时,△ABC为等边三角形,它的面积为
1
2
bcsinA=
1
2
×2×2×
3
2
=
3

故答案为:
3
点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网